您的位置: 首页 > 2022年7月 第37卷 第7期 > 文字全文
2022年7月 第37卷 第7期
目录

不同类型人工晶状体的临床应用及研究进展

来源期刊: 眼科学报 | 2022年7月 第37卷 第7期 577-584 发布时间: 收稿时间:2022/12/15 15:39:14 阅读量:2933
作者:
0
关键词:
白内障老视矫正型人工晶状体非球面人工晶状体散光型人工晶状体分类
DOI:
10.3978/j.issn.1000-4432.2022.05.12
    白内障作为一种常见的眼科疾病,是全球第一位致盲眼病,目前尚无药物能够治疗,手术是唯一有效的办法。随着现代眼科手术技术的发展以及人工晶状体(intraocular lens,IOL)设计和功能的更新升级,人们对视觉质量的要求越来越高,白内障超声乳化联合IOL植入术已经从单纯的复明手术转变为个性化的屈光手术。为满足不同需求的患者术后获得较好的视觉质量,IOL经历了从单焦点到多焦点、球面到非球面的发展,还有散光型IOL和各类功能性IOL的临床应用,也为患者提供了更多的选择。充分了解不同类型IOL的优势和特点,根据患者自身眼部情况、日常用眼习惯以及需求,个性化地选择IOL植入对视觉质量的恢复和满意度起着至关重要的作用。因此本文将针对不同类型的IOL,从设计与分类、术后临床效果及适应人群进行综述,为IOL的选择提供指导建议。
超声乳化白内障吸除术是应用超声能量将混浊晶状体核和皮质乳化后吸除、保留晶状体后囊的手术方法。该技术自问世以来发展迅速,小切口配合可折叠、单焦点人工晶状体(single focus intraocular lens,SIOL)成为白内障手术的第一选择。然而随着现代人对视觉质量的要求越来越高,传统的单焦、球面IOL已无法满足白内障患者的用眼需求。因此出现了为满足不同距离视物功能而设计的老视矫正型IOL,包括多焦点IOL(multifocal intraocular lens,MIOL)、三焦点IOL、景深延长IOL和可调节IOL;为降低晶状体球面像差而设计的非球面IOL;为散光患者设计的散光型IOL(Toric IOL);以及经过特殊处理,如肝素、活性氧表面修饰IOL以及蓝光滤过IOL[1]

1 老视矫正型 IOL

1.1 设计与分类

    传统的SIOL植入后,患者远视力得到提高,但因为只有1个焦点,要想近距离视物清晰仍需佩戴老视眼镜。为此设计出的老视矫正型IOL能使患者术后获得清晰的裸眼远距离视力(uncorrected distance visual acuity,UCDVA)、裸眼中距离视力(uncorrected intermediate visual acuity,UCIVA)和裸眼近距离视力(uncorrected near visual acuity,UCNVA),实现完全脱镜。其原理是重新分配投射光线,使其经过IOL产生2个或多个焦点同时投射在视网膜上,依据同时知觉原理,两焦点屈光力之差大于3D时,大脑选择性地抑制其中较模糊的图像,使得更清晰的像在视觉中枢形成视觉,一定程度上满足了患者的全程视力需求[1-2]
   1.1.1 折射型 MIOL
    根据折射原理设计,IOL前表面为几个屈光力不同的折射区,后表面为光滑球面,根据折射区域分布的不同分为区带折射和区域折射:1)以Array ReZoom区带折射型为例,其前表面为5条折射型同心折射环,1、3、5区产生远视屈光力,2、4区产生3.5 D的近视屈光力,使光线形成广泛的焦点,远近物体均能聚焦在视网膜上。2)以LENSTEC SBL-3区域折射型为例,不同屈光力的扇形折射区域分为视近区(42%)、过渡区(8%)和视远区(50%),使远、近距离视力平稳过渡,将光能损失率降低的同时提升UCIVA。折射型MIOL(refractive multifocal intraocular lens,RMIOL)的光学特性使其容易受瞳孔大小和晶体偏移的影响,二者改变时会遮挡部分光学区域,可能会出现对比敏感度(contrast sensitivity,CS)降低,影响视网膜成像质量,但随着时间推移,经过大脑选择性适应,这种现象会有所改善[1,3]
   1.1.2 衍射型 MIOL
    根据Huygens-Fresnel原理设计,以Tecnis ZMB00全光学面衍射型为例,其前表面为非球面设计,后表面为3 2个同心圆排列的衍射阶梯环,受阶梯环高度及间距影响,入眼光线被分为屈光力大的近焦点和屈光力小的远焦点,且同一时刻仅有 1 个焦点成像于视网膜上。衍射型MIOL(diffractive multifocal intraocular lens,DMIOL)的光学特性使衍射光线经过光学部的任何区域均可形成远、近2个焦点,且衍射范围大,基本不受瞳孔大小和晶体偏移的影响。但因为光线远、近焦点分配相等,丢失的部分光线可能导致UCIVA较差,且在暗环境瞳孔较大时也会出现CS降低[1,3-4]
   1.1.3 折射 / 衍射混合型 MIOL
    同时有折射区带和衍射阶梯环,以Acr ySof IQ ReSTOR SN6AD1为例,直径3.6 mm的衍射区 有9个阶梯环,其高度及间距从中央向周围递减,渐进的衍射阶梯将入眼光线分配到远近焦点,提供高质量的全程视力,而在暗环境下瞳孔较大时,周边的折射部分将更多的光线聚焦到远焦点,减轻视觉干扰,UCDVA更好。折射/衍射混合型MIOL(hybrid multifocal intraocular lens, HMIOL)的光学特性提供了更高质量的全程视力,且对瞳孔依赖更小,弥补了RMIOL、DMIOL存在的局限[1,3,5]
   1.1.4 三焦点 IOL
    原理同HMIOL,以蔡司三焦点AT Lisa tri 839MP为例,6.0 mm的光学区为4 9个折射/衍射交替结合区,中央0.00~4.34 mm为三焦点,4.34~6.00 mm为传统多焦点设计,入眼光线分别以50%、20%、30%不对称的分配至远中近焦点,并且中、近距离焦点分别附加+1.66 D和+3.33 D的设计,使中焦点衍射2阶与近焦点衍射1阶重合,从而提高了光线能量利用率。相比传统的MIOL,三焦点的UCIVA明显改善,实现了真正意义上的全程视力,且不依赖瞳孔大小,拥有更好的视觉质量[1,3,5]
   1.1.5 景深延长 IOL
    基本光学原理是将入眼光线形成一个延长连续焦点,从而达到扩展景深或延长焦深的效果,使物像清晰范围扩大。根据原理可分为:1 )小孔径设计——原理是消除周边未聚焦的光线;2 )生物模拟——设计与天然晶状体相似,镜片中间最厚逐渐向周边变薄,提供了从远到近处的连续聚焦;3 )衍射光学——瞳孔设计的衍射梯形;4 )非衍射光学(即非球面) [1,6-7]。不同类型的景深延长IOL均能提供出色的UCDVA、UCIVA和较好的UCNVA,其中小孔径和非衍射光学表现出更好的视野范围,且后者在视觉质量方面效果最好[8]
   1.1.6 可调节 IOL
    可调节IOL模拟人眼调节机制,通过调整IOL光学部在囊袋内的位置,实现远中近距离视力变化。根据设计原理可分为:1 )单光学——可伸缩襻改变IOL相对于角膜的轴向位置,光学部随之前后移动;2 )双光学——睫状肌舒缩改变囊袋张力,引起双光学面IOL相互位移;3)形状改变——运用可变形材料改变IOL表面形态;4 )囊袋填充——囊袋内注入流体物质,通过襻和光学部的双向泵来回流动[1,9-10]。不同设计的可调节IOL在UCDVA和CS方面效果较好,而在UCNVA和调节程度存在差异,40%~70%的患者术后仍需使用老花镜,且光晕、眩光现象发生率较高,但目前研究缺乏标准化的结果,需要更多的研究来评估临床效果[9]。并且可调节IOL依赖于囊袋的柔韧性,囊袋的纤维化会限制其调节功能,有研究[11]认为,睫状沟放置可能带来更好的屈光效果。

1.2 术后临床效果

   1.2.1 视力
    无论植入老视矫正型IOL还是SIOL,患者术后UCDVA均得到提高,而前者的UCNVA较SIOL则有明显提高[4,5,7,9,12-13]。研究[7,13]表明:RMIOL与DMIOL相比,前者的UCDVA较好,后者的UCNVA则相对较好,而HMIOL相比前两者,拥有更为均衡的全程视力。术后UCIVA效果最好的是三焦点IOL,优于传统MIOL,且两者在UCDVA、UCNVA方面均无明显差异[5,7,14]。相比MIOL和三焦点IOL,景深延长IOL的UCIVA略好,DCNVA稍差,可调节IOL和MIOL的效果相似[7,10,14-15]。总之,在所有老视矫正型IOL中,三焦点IOL拥有最佳的全程视力,但同时也会有更高的光学现象发生率。而视力并非是决定视觉质量的唯一因素,还与患者用眼习惯,以及眩光、光晕等视觉不良反应相关。
   1.2.2 对比敏感度
    CS是指人在不同明亮空间对比下分辨物像差别的能力,即人眼分辨边界模糊物体的能力。由于光线通过IOL时被分配为多个焦点,光线能量的丢失使视网膜成像质量降低,从而导致明暗视状态下各空间频率的CS均降低[2]。SIOL与老视矫正型IOL相比,受不良光学现象的影响更小,植入后二次更换的概率也较低[12-13]。针对不同老视矫正型IOL的CS研究[7]表明:植入DMIOL优于RMIOL,出现光晕、眩光等视觉不良症状发生率更小。三焦点和HMIOL既没有RMIOL的瞳孔依赖性,也减少了DMIOL可能产生的光散射,降低了眩光和光晕的发生,患者的视力、CS以及术后满意度更高[7,13-14]。相比MIOL和三焦点IOL,景深延长IOL和可调节IOL的不良视觉症状较少[7,10,14-15]。尽管术后早期患者的CS降低,但随着时间延长CS会逐渐恢复,这可能因为视网膜神经节细胞逐渐对其变化产生耐受性,患者对视网膜上多焦点成像逐渐适应所导致[2]
   1.2.3 脱镜率与满意度
    老视矫正型IOL最重要的功能是使患者术后拥有全程视力,摆脱眼镜困扰,但不同设计的老视矫正型IOL各有优势,要想实现更高的脱镜率,应结合不同视物距离需求的患者个性化选择。近年出现双眼混合搭配IOL的观点,如优势眼植入RMIOL以提供较好的UCDVA、UCIVA,或植入DMIOL提供较好的UCNVA,可有效提高脱镜率[16]。还有将不同屈光度的老视矫正型IOL混合搭配植入双眼,满足不同用眼需求的患者,术后脱镜率与满意度均效果显著,其中双眼植入三焦点IOL的患者,术后各方面效果均优于MIOL、景深延长IOL和可调节IOL[4,7,17-18]。不过脱镜率与满意度有较强的主观性,除了IOL的原因外,还与患者的戴镜习惯、视物距离、主观意愿等密切相关。

1.3 适应人群

    老视矫正型IOL能提供良好的全程视力,适用于有全程视力需求并且迫切期望摆脱眼镜依赖的患者,尤其是日常生活中使用手机、电脑等中近距离较多,并且相对年轻、眼底条件好的患者。但对有角膜异常、青光眼、晶状体囊袋不稳定、黄斑病变等眼部疾病的患者绝对禁用,对准分子激光术后的患者也不适合植入[1,7]。鉴于其价格昂贵、部分患者对视觉质量要求高,如需要精细近视力、暗环境工作等,应与患者充分沟通,根据需求个性化选择,确保最大程度发挥IOL的特性和优势,满足患者的视觉期望。同时提前告知可能出现眩光、光晕、CS下降、精细视力受损等视觉副作用,以及可能需要几个月的神经适应过程,增加患者的理解[2-3]

2 非球面 IOL

2.1 设计与分类

    波前像差是实际成像与理想成像之间的差异,是评判视觉质量的主要指标之一。人眼存在的像差有低阶像差和高阶像差,低阶像差包括近视、远视、散光,高阶像差包括球差、彗差、不规则散光等,高阶像差是影响视觉质量的重要因素,其中又以球面像差(spherical aberration,SA)对视觉质量影响最大[19]。研究[20]显示:人眼SA主要来源于角膜与晶状体。角膜球面为正性球差,并且很少随着年龄的增加而改变,而晶状体在人年轻时为负性球差,可以抵消角膜的正性球差,但随着年龄的增加,晶状体内各种成分的折射率发生改变,使得其负性球差变为正性,导致人眼SA增大。早期的IOL为球面设计,因价格低廉在很长一段时间广泛使用,但植入后会使人眼的正性球差增加,导致视觉质量降低,而植入非球面IOL可减小人眼总球差[1]
   2.1.1 非球面负球差 IOL
    自身球差值为负,可矫正角膜正球差,从而减小人眼总球差,提高CS。通过模型眼[21]发现:非球面负球差IOL将人眼球差矫正越趋向于零,视网膜成像质量越好。研究[22]表明:白内障患者术前行角膜球差测量,然后个性化选择非球面负球差IOL,与随机选择植入非球面IOL相比,术后拥有更好的视力和C S,因此选择合适大小球差的IOL,可以充分发挥其优势。常见的球差值有?0.27 μm、?0.20 μm,但术后保留多少球差最合适仍有争议。
   2.1.2 非球面零球差 IOL
    自身无球差,不能矫正角膜正球差。SA的存在不仅与CS有关,还与焦点深度有关,正球差会带来相对于最佳主观焦点的近视偏移,而负球差则是远视偏移[23]。研究[24]表明:植入非球面IOL在改善白内障患者视觉质量的同时,保留一定的正球差可改善近视,而保留负球差可改善远视。因此患者植入后保留部分的正球差,在一定程度上可以增加人眼焦点深度和屈光的假性调节力,视力和CS没有明显降低[25]

2.2 术后临床效果

   2.2.1 视力
    研究[26]表明:植入非球面和球面IOL都可以有效提高术后视力,但非球面IOL可以提供更小的全眼SA、高阶像差及更好的CS,客观视觉质量优于球面IOL。植入非球面IOL通过赋予零球差或负球差,改变了术后全眼SA,有效提高术后视力的同时,零球差组可保留患者部分焦点深度,从而在一定程度上改善了患者的术后视觉质量[24]
   2.2.2 瞳孔影响
    然而,非球面IOL并非在所有情况下均优于球面IOL,由于SA是光线通过晶状体边缘时所致,因此在明环境下瞳孔相对较小时,2种IOL对视觉质量的影响并不明显,而瞳孔相对较大时光学特性才充分发挥。研究[23,26-27]显示:在暗环境或有眩光
的情况下,植入非球面IOL可提高暗视力,减少眩光的发生,术后拥有更小的高阶像差和SA、更高的CS,起到降低眩光、光晕的作用,视觉质量明显优于球面IOL,但二者视力无明显统计学差异。
   2.2.3 倾斜和偏心
    非球面IOL的倾斜和偏心与球面IOL产生的球差相比,前者对视觉质量的负面影响更大[28]。当IOL发生倾斜、偏心时,会造成眼内不对称的高阶像差,视觉质量明显下降,而非球面零球差IOL受其影响较小,其成像效果优于球面及非球面负球差IOL,因此是各种IOL设计中最安全的选择[29]

2.3 适应人群

    非球面IOL在暗环境下瞳孔较大时可以完全发挥其性能,降低S A和高阶像差,因此对夜间驾驶、暗环境工作者等,暗视力要求较高的人更值得推荐。并且选择适合的球差,还需要参考角膜情况,对角膜像差不确定,如角膜瘢痕、圆锥角膜、准分子激光术后的患者,不适于植入负球差,最稳妥的办法是植入零球差,不改变总的球差[29]。同时球面较非球面IOL价格低廉,因此对视觉质量要求不高、相对贫困的人群也有一定的性价比。

3 Toric IOL

3.1 设计原理

    Tor ic IOL是在环曲面透镜的基础上附加一柱镜,从而达到提高视力和矫正散光的作用[1]。我国流行病学调查数据[30]显示:白内障患者术前角膜散光为0.50~0.99 D是最常见的范围(30.08%),其次是1.00~1.49 D (22.15%)、≤0.50 D(21.21%)
和1.50~1.99 D (10.28%)。这些散光会导致幻影、视力下降等,影响白内障术后的视觉质量,要想获得更好的视力需再次手术矫正,但是预测性较差,术后可能存在过矫或矫正不足、屈光回退等并发症。而Toric IOL植入具有可预测性强、安全性高等优点,是目前矫正白内障患者角膜散光最有效的方法[31-32]

3.2 术后临床效果

   3.2.1 视力
    研究[31,33-34]显示:Toric IOL治疗白内障合并角膜散光,效果优于植入非Toric IOL和角膜散光松解术。植入非球面Toric IOL,散光得到矫正的同时,还可以弥补角膜正性球差,降低高阶像差,获得更好的视觉质量[35]。而植入多焦点Toric IOL
不仅可以矫正角膜散光,还可提供出色的远中近距离视力,屈光结果的可预测性、光学性能都非常好,更多患者实现完全脱镜[36]。Toric IOL的荟萃分析[31]显示:与角膜散光松解术相比,Toric IOL稳定性好,可预测性强,矫正散光范围更广,能提供更好的UCDVA,更高的脱镜率。
   3.2.2 Toric IOL 稳定性
    影响Toric IOL术后视觉质量最重要的,是其在囊袋内的稳定性,主要与囊袋大小、眼轴长度和晶状体厚度呈正相关,高度近视患者眼轴较长,会导致囊袋变大、悬韧带脆弱、囊袋不对称性收缩等,使得Toric IOL术后旋转稳定性变差[37]。研究[38]表明:当Toric IOL每出现1°的轴位偏离时,就会导致矫正效果减少3.3%,当偏离30°时,散光矫正效果消失,超过30°反而加重散光,出现复视、眩光和视力下降等症状,需再次手术来调整IOL位置。此外,Toric IOL的材料、襻的设计也是影响旋转稳定性的因素。研究[34,39-40]显示:板型襻设计的稳定性优于C襻,疏水性丙烯酸酯IOL囊袋黏附性强,其稳定性优于亲水性丙烯酸酯。而单焦点、多焦点Toric IOL以及传统SIOL三者之间相比,旋转稳定性无明显差异[34,36,41]

3.3 适应人群

    Toric IOL适用于规则性角膜散光度数≥0.75 D,并且有脱镜意愿的白内障患者,全程视力有需求者可以考虑植入多焦点Toric IOL[1]。但对于囊袋稳定性较差,如囊袋不完整、悬韧带松弛或脱位,以及眼轴较长、囊袋较大的患者,因术后容易导
致Toric IOL旋转﹑偏心或倾斜,不仅无法起到矫正作用,甚至会加重患者的散光,因此须谨慎选择。对患有不规则角膜散光,如角膜瘢痕、圆锥角膜的患者绝对禁用[32-34]

4 经过特殊处理 IOL

4.1 蓝光滤过 IOL

    细胞培养和动物研究[1,42]表明:短波长可见光可以诱发视网膜光毒性,而蓝光滤过IOL在其材料中加入甲碱类黄色素,可减少眼睛对紫外线辐射(200~400 nm波长)和短波长可见光(紫蓝光,400~500 nm)的暴露,从而起到减轻黄斑光损
伤、保护视网膜的作用,并有可能防止老年性黄斑变性的发展和恶化。植入蓝光滤过IOL不会降低视力和视觉质量,也不会影响睡眠觉醒周期,且理论上可以改善眩光[43]。但目前尚缺乏确切的临床证据支持对黄斑的保护效果,是否推荐使用
仍有争议[44]

4.2 肝素表面修饰 IOL

    肝素作为一种抗凝血剂,对黏附因子和降解酶的表达产生影响。对IOL行肝素修饰后,可以增加其表面亲水特征,从而减少炎症细胞的粘附,减轻术后前房炎性反应,具有更好的生物相容性[1]。研究[45-46]表明:亲水性较强的肝素表面修饰IOL,在白内障手术后葡萄膜炎的发生率较低,适用于葡萄膜炎、糖尿病以及儿童白内障等患者。但目前尚缺乏足够的信息来评估哪种类型的IOL最适合用于患有葡萄膜炎的白内障患者[47]

4.3 活性氧表面修饰 IOL

    后囊膜混浊(posterior capsular opacification,PCO)是白内障患者术后最常见的并发症,目前认为形成机制为:晶状体损伤会产生促炎细胞因子,导致晶状体上皮细胞刺激增殖,并分化为肌成纤维细胞,最终迁移在IOL的视轴形成PCO[48]
IOL的材料、设计和功能的选择均会影响PCO的发生,亲水性丙烯酸IOL的PCO发生率高于疏水性丙烯酸IOL,而活性氧表面修饰可以使IOL表面更加疏水,因此植入活性氧表面修饰IOL可有效降低PCO的发生率[1,49]

5 结语

    随着屈光性白内障手术的普及和IOL的飞速发展,不同功能的IOL为适应不同类型的患者进行功能组合。这些高端IOL结合患者情况发挥自身优势,显著改善了患者术后视力和视觉质量,提高脱镜率。此外,完美的屈光性白内障手术还与各种新兴手术技术和设备密切相关,如微切口、飞秒激光辅助以及IOL的计算和术中导航系统的保驾护航[50]。但由于医疗及经济条件的限制,目前仍与国际先进水平有一定差距,因此我们眼科医生不仅要掌握各种型号IOL的特点和优势,还要不断学习更先进的技术和设备,为实现屈光性白内障手术精准、个性化治疗而努力奋斗。

开放获取声明

    本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Chinese Cataract Society. Chinese expert consensus on classification of intraocular lenses (2021)[ J]. Chin J Ophthalmol, 2021, 57(7): 495-501.
2、Li ZH, Xu WQ, Ye Z. The importance of neuroadaptation after multifocal intraocular lens implantation[ J]. Chin J Ophthalmol, 2021, 57(1): 6-10.
3、Balgos M, Vargas V, Alió JL. Correction of presbyopia: An integrated update for the practical surgeon[ J]. Taiwan J Ophthalmol, 2018, 8(3): 121-140.
4、Lee JH, Lee H, Lee JA, et al. Clinical outcomes after mix-and-match implantation of diffractive multifocal intraocular lenses with + 2.75 and + 4.00 diopter add powers[ J]. BMC Ophthalmol, 2020, 20(1): 193.
5、Doroodgar F, Niazi F, Sanginabadi A, et al. Visual performance of four types of diffractive multifocal intraocular lenses and a review of articles[ J]. Int J Ophthalmol, 2021, 14(3): 356-365.
6、Kanclerz P, Toto F, Grzybowski A, et al. Extended depth-of-field intraocular lenses: an update[ J]. Asia Pac J Ophthalmol (Phila), 2020, 9(3): 194-202.
7、Sieburth R, Chen M. Intraocular lens correction of presbyopia[ J]. Taiwan J Ophthalmol, 2019, 9(1): 4-17.
8、Ang RE, Picache GCS, Rivera MCR, et al. A comparative evaluation of visual, refractive, and patient-reported outcomes of three extended depth of focus (EDOF) intraocular lenses[ J]. Clin Ophthalmol, 2020, 14: 2339-2351.
9、Alió JL, Alió Del Barrio JL, Vega-Estrada A. Accommodative intraocular lenses: where are we and where we are going[ J]. Eye Vis (Lond), 2017, 4: 16
10、Schallhorn JM, Pantanelli SM, Lin CC, et al. Multifocal and accommodating intraocular lenses for the treatment of presbyopia: a report by the american academy of ophthalmology[ J]. Ophthalmology, 2021, 128(10): 1469-1482.
11、Alió JL, Ben-Nun J. Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model[ J]. J Refract Surg, 2015, 31(2): 124-128.
12、de Silva SR, Evans JR, Kirthi V, et al. Multifocal versus monofocal intraocular lenses after cataract extraction[ J]. Cochrane Database Syst Rev, 2016, 12(12): CD003169.
13、Dyrda A, Martínez-Palmer A, Martín-Moral D, et al. Clinical results of diffractive, refractive, hybrid multifocal, and monofocal intraocular lenses[ J]. J Ophthalmol, 2018, 2018: 8285637.
14、B?hm M, Petermann K, Hemkeppler E, et al. Defocus curves of 4 presbyopia-correcting IOL designs: diffractive panfocal, diffractive trifocal, segmental refractive, and extended-depth-of-focus[ J]. J Cataract Refract Surg, 2019, 45(11): 1625-1636.
15、Rodov L, Reitblat O, Levy A, et al. Visual outcomes and patient satisfaction for trifocal, extended depth of focus and monofocal intraocular lenses[ J]. J Refract Surg, 2019, 35(7): 434-440.
16、Lubiński W, Podboraczyńska-Jodko K, Gronkowska-Serafin J, et al. Visual outcomes three and six months after implantation of diffractive and refractive multifocal IOL combinations[ J]. Klin Oczna, 2011, 113(7-9): 209-215.
17、Bilbao-Calabuig R, González-López F, Amparo F, et al. Comparison between mix-and-match implantation of bifocal intraocular lenses and bilateral implantation of trifocal intraocular lenses[ J]. J Refract Surg, 2016, 32(10): 659-663.
18、Song JE, Khoramnia R, Son HS, et al. Comparison between bilateral implantation of a trifocal IOL and mix-and-match implantation of a bifocal IOL and an extended depth of focus IOL[ J]. J Refract Surg, 2020, 36(8): 528-535.
19、Hughes RP, Vincent SJ, Read SA, et al. Higher order aberrations, refractive error development and myopia control: a review[ J]. Clin Exp Optom, 2020, 103(1): 68-85.
20、Namba H, Kawasaki R, Sugano A, et al. Age-related changes in ocular aberrations and the Yamagata study (Funagata)[ J]. Cornea, 2017, 36 Suppl 1: S34-S40.
21、Langenbucher A , Janunts E, Seitz B, et al. Theoretical image performance with customized aspheric and spherical IOLs - when do we get a benefit from customized aspheric design?[ J]. Z Med Phys, 2014, 24(2): 94-103.
22、Schrecker J, Schr?der S, Langenbucher A, et al. Individually customized IOL versus standard spherical aberration-correcting IOL[ J]. J Refract Surg, 2019, 35(9): 565-574.
23、Marín-Franch I, Xu R, Bradley A, et al. The effect of spherical aberration on visual performance and refractive state for stimuli and tasks typical of night viewing[ J]. J Optom, 2018, 11(3): 144-152.
24、Du W, Lou W, Wu Q. Personalized aspheric intraocular lens implantation based on corneal spherical aberration: a review[ J]. Int J Ophthalmol, 2019, 12(11): 1788-1792.
25、Steinwender G, Strini S, Glatz W, et al. Depth of focus after implantation of spherical or aspheric intraocular lenses in hyperopic and emmetropic patients[ J]. J Cataract Refract Surg, 2017, 43(11): 1413-1419.
26、Chen Y, Wang X, Zhou CD, et al. Evaluation of visual quality of spherical and aspherical intraocular lenses by Optical Quality Analysis System[ J]. Int J Ophthalmol, 2017, 10(6): 914-918.
27、Schuster AK, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis[ J]. Ophthalmology, 2013, 120(11): 2166-2175.
28、Oltrup T, Bende T, Al-Mohamedi H, et al. Comparison of spherical and aspherical intraocular lenses with decentration and tilt error using a physical model of human contrast vision and an image quality metric[ J]. Z Med Phys, 2021, 31(3): 316-326.
29、Ashena Z, Maqsood S, Ahmed SN, et al. Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations[ J]. Vision (Basel), 2020, 4(3): 41.
30、Wu Z, Liu C, Chen Z. Prevalence and age-related changes of corneal astigmatism in patients undergoing cataract surgery in Northern China[ J]. J Ophthalmol, 2020, 2020: 6385098.
31、Kessel L, Andresen J, Tendal B, et al. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis[ J]. Ophthalmology, 2016, 123(2): 275-286.
32、Singh VM, Ramappa M, Murthy SI, et al. Toric intraocular lenses: expanding indications and preoperative and surgical considerations to improve outcomes[ J]. Indian J Ophthalmol, 2022, 70(1): 10-23.
33、Keshav V, Henderson BA. Astigmatism management with intraocular lens surgery[ J]. Ophthalmology, 2021, 128(11): e153-e163.
34、Nú?ez MX, Henriquez MA, Escaf LJ, et al. Consensus on the management of astigmatism in cataract surgery[ J]. Clin Ophthalmol, 2019, 13: 311-324.
35、Pérez-Vives C, Ferrer-Blasco T, García-Lázaro S, et al. Optical quality comparison between spherical and aspheric toric intraocular lenses[ J]. Eur J Ophthalmol, 2014, 24(5): 699-706.
36、Marques EF, Ferreira TB, Sim?es P. Visual performance and rotational stability of a multifocal toric intraocular lens[ J]. J Refract Surg, 2016, 32(7): 444-450.
37、Li S, Li X, He S, et al. Early Postoperative Rotational stability and its related factors of a single-piece acrylic toric intraocular lens[ J]. Eye (Lond), 2020, 34(3): 474-479.
38、Webers VSC, Bauer NJC, Visser N, et al. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery[ J]. J Cataract Refract Surg, 2017, 43(6): 781-788.
39、Kim YJ, Wee WR, Kim MK. Efficacy of 4-haptic bitoric intraocular lens implantation in asian patients with cataract and astigmatism[ J]. Korean J Ophthalmol, 2019, 33(1): 36-45.
40、Draschl P, Hirnschall N, Luft N, et al. Rotational stability of 2 intraocular lenses with an identical design and different materials[ J]. J Cataract Refract Surg, 2017, 43(2): 234-238.
41、Yang JJ, Qin YZ, Qin L, et al. Comparison of the clinical efficacy of AcrySof(?) IQ and TECNIS(?) toric intraocular lenses: A real-world study[ J]. Exp Ther Med, 2020, 20(5): 25.
42、Downie LE, Wormald R, Evans J, et al. Analysis of a systematic review about blue light-filtering intraocular lenses for retinal protection: understanding the limitations of the evidence[ J]. JAMA Ophthalmol, 2019, 137(6): 694-697.
43、Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence?[ J]. Eye (Lond), 2016, 30(2): 215-221.
44、Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health[ J]. Cochrane Database Syst Rev, 2018, 5(5): CD011977.
45、Huang Q, Cheng GP, Chiu K, et al. Surface modification of intraocular lenses[ J]. Chin Med J (Engl), 2016, 129(2): 206-214.
46、R?nbeck M, Kugelberg M. Posterior capsule opacification with 3 intraocular lenses: 12-year prospective study[ J]. J Cataract Refract Surg, 2014, 40(1): 70-76.
47、Leung TG, Lindsley K, Kuo IC. Types of intraocular lenses for cataract surgery in eyes with uveitis[ J]. Cochrane Database Syst Rev, 2014, 3(3): CD007284.
48、Jiang J, Shihan MH, Wang Y, et al. Lens epithelial cells initiate an inflammatory response following cataract surgery[ J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4986-4997.
49、Cooksley G, Lacey J, Dymond MK, et al. Factors affecting posterior capsule opacification in the development of intraocular lens materials[ J]. Pharmaceutics, 2021, 13(6): 860.
50、Zvorni?anin J, Zvorni?anin E. Premium intraocular lenses: the past, present and future[ J]. J Curr Ophthalmol, 2018, 30(4): 287-296.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
推荐阅读
出版者信息
中山眼科



中山大学