您的位置: 首页 > 2023年12月 第38卷 第12期 > 文字全文
2023年7月 第38卷 第7期11
目录

人工晶状体屈光力计算:求于至精,臻于至善

Intraocular lens calculation: seeking to best, improving to perfection

来源期刊: 眼科学报 | 2023年12月 第38卷 第12期 775-781 发布时间:2023-11-15 收稿时间:2024/3/6 15:43:15 阅读量:3245
作者:
关键词:
白内障人工晶状体屈光预测误差
cataract intraocular lens refractive prediction error
DOI:
10.12419/2307250001
随着功能性人工晶状体的推广应用,白内障患者的屈光预测准确性日益受到重视。尽管人工晶状体屈光力计算公式在近年来不断发展革新,但解剖参数异常或既往有其他眼病、眼部手术史的白内障患者屈光预测仍存在挑战。根据生物学参数特点与病史选择适合的人工晶状体屈光力计算公式是准确进行白内障手术屈光预测的重要保障。
With the widespread application of functional intraocular lense (IOL), the accuracy of refractive prediction in cataract patients is increasingly important. Although IOL power calculation formulas have been innovated continuously in recent years, there are still challenges in predicting refractive powerin cataract patients with abnormal anatomical parameters, ocular comorbidities, or a history of ocular surgery. Based on the the characteristics of biological parameters and medical history to selcet appropriate IOL power formula, it is an important guarantee for accurate refractive prediction in cataract patients.
屈光预测误差明显影响白内障术后患者的视觉质量与满意度,精准的屈光规划是屈光性白内障手术的重要保障。功能性人工晶状体(intraocular lens, IOL)的推广应用对屈光预测准确性提出了更高的要求,术后残余的屈光误差是影响功能性IOL植入术后满意度最主要的因素[1-2]。传统的IOL计算公式易出现屈光预测误差[3-4],已经不能满足临床需求。近年来,临床上出现一些结合人工智能、厚透镜光学、射线追踪等方法的新公式,使得普通白内障患者能获得良好的屈光预测准确性:80%的患者术后屈光预测误差<0.50 D,94%的患者术后屈光预测误差<1.0 D[5-6]。然而,特殊白内障患者(如解剖参数异常、合并其他眼病或眼部手术史)的屈光预测准确性仍然欠佳,许多临床医生不知道如何选择合适的IOL计算公式。本文旨在梳理IOL计算公式在特殊白内障患者的表现,为眼科同道选择公式提供参考。

1 眼球解剖参数异常

IOL计算公式基于眼球解剖参数,如眼轴长度、角膜曲率、前房深度等,推算患者植入不同类型和屈光力IOL时对应的屈光状态。目前大部分的IOL计算公式是基于普通白内障患者的数据库研发,眼球解剖参数异常的患者占比较低。当患者的眼球解剖参数偏离人群平均值时,有效晶状体位置(effective lens position,ELP)与正常人群存在较大差异,公式的预测准确性也随之下降。本文将重点阐述眼轴长度(长眼轴、短眼轴)、角膜曲率(扁平角膜、陡峭角膜、圆锥角膜)与前房深度异常这几种特殊情况下IOL计算公式的选择。

1.1 眼轴长度异常

1.1.1 长眼轴
对于眼轴长度≥26 mm的长眼轴患者,新公式Kane的准确性更高,而传统公式如Holladay1、SRK/T公式则需要使用Wang-Koch眼轴调整法进行校正。一项综述纳入了近10年28项评价长眼轴患者公式准确性的研究(共计5 186例患者),发现Kane公式在2项最大样本量的研究(1 308例、637例)中表现最优,超过了Barrett Universal Ⅱ公式[7]。对于眼轴>30 mm的患者,研究表明Kane公式的绝对预测误差中位数(median absolute error,MedAE)低于RBF 2.0、Emmetropic Verifying Optical(EVO)、Barrett UniversalⅡ与Haigis公式[8]
由于传统公式在长眼轴患者存在远视预测误差,Wang等与Koch等认为公式的远视预测误差主要源自生物测量仪在长眼轴患者存在的眼轴测量误差,2011年他们提出了眼轴调整法,并在2018年进行了更新[9-11]。笔者团队在211例(211眼)长眼轴患者中比较了不同版本的Wang-Koch眼轴调整法,发现Holladay1结合第一版线性Wang-Koch眼轴调整法的准确性最高(MedAE:0.27 D),与当代新公式(MedAE:0.27 ~ 0.32 D)表现相当[12]。Kane公式在网页可以直接免费计算,方便快捷,但眼轴超过35 mm时无法计算。而第一版线性Wang-Koch眼轴调整法需要手工校正眼轴长度(校正眼轴 = 0.828 9 ×光学测量眼轴 + 4.266 3),再将校正眼轴重新输入Holladay 1公式计算,使用相对繁琐,但无眼轴长度限制。综合考虑临床便捷性与公式对眼轴长度的限制,笔者推荐:对于眼轴长度≤35 mm的患者,选用Kane公式;对于眼轴长度>35 mm的患者,选用Holladay1结合第一版线性Wang-Koch眼轴调整法。
1.1.2 短眼轴
Kane公式在眼轴长度≤22mm的短眼轴患者也表现优秀,而传统被认为适合短眼轴患者的Hoffer Q公式被证明存在较大的屈光预测误差。Darcy等[13]评价了9条公式在766例短眼轴患者的准确性,各公式的平均绝对预测误差(mean absolute error,MAE)从小到大排序依次为:Kane、Holladay 2、Olsen、RBF 2.0、Barrett UniversalⅡ、Holladay 1、Hoffer Q、Haigis与SRK/T公式。在一项纳入625例短眼轴患者的研究中,Kane公式的准确性超过了Barrett UniversalⅡ、RBF 2.0、Olsen、Holladay 2等公式;其中,Kane公式在植入 SN60WFIOL亚组±0.50 D范围内预测误差百分比为75.5%,而Barrett UniversalⅡ和Hoffer Q公式分别为69.9%与59.9%[6]
真性小眼球(nanophthalmos,眼轴长度<20 mm)与相对性前部小眼球(relative anterior microphthalmos,角膜水平横径≤ 9.5 mm)是短眼轴患者中的2类特殊情况。Lin等[14]发现,真性小眼球患者易出现近视误差,消除系统误差后,Haigis公式表现最佳;而相对性前部小眼球患者无需进行常数优化,Barrett Universal Ⅱ公式更优。

1.2 角膜曲率异常

1.2.1 扁平与陡峭角膜
角膜曲率的波动主要影响传统公式,尤其是SRK/T公式。SRK/T公式对角膜屈光力<42 D的扁平角膜患者易出现远视预测误差,而对于角膜屈光力>46 D的陡峭角膜患者易出现近视预测误差。Reitblat等[15]建立了SRK/T公式的角膜曲率校正方程:
陡峭角膜患者:校正K值 =–1.91 + 1.05 ×测量K值
扁平角膜患者:校正K值 =–0.60 + 1.01 ×测量K值
校正角膜曲率后,陡峭角膜患者使用SRK/T公式时,预测误差在±0.50 D范围内的百分比从65.38%提升至80.77%;扁平角膜患者提升幅度相对较小(从85.19%提升至90.74%)。
新公式受角膜曲率的波动影响较小。扁平角膜患者使用EVO公式的准确性最高[16],而陡峭角膜患者使用Barrett UniversalⅡ公式效果最佳[16-17]。使用IOLMaster 700测量得到的全角膜曲率进行计算,能进一步提升对这部分人群的预测准确性[16]
1.2.2 圆锥角膜
圆锥角膜患者的角膜形态异常,针对普通白内障人群研发的IOL计算公式在此类患者中表现欠佳。Savini等[18]评价了Barrett Universal Ⅱ、Haigis、Hoffer Q、Holladay 1与SRK/T公式在圆锥角膜患者的表现:随着圆锥角膜病程的进展,IOL计算公式准确性下降;SRK/T公式准确性最高,但其±0.50 D范围内的预测误差百分比仅为61.9%。
目前,有3个IOL计算公式可选用圆锥角膜模式:Barrett True K、Kane与Holladay 2。Kane等[19]评价了9条公式在147例圆锥角膜患者的预测准确性,Kane圆锥角膜公式的MAE最小,优于SRK/T、Barrett Universal Ⅱ、Kane未校正、Holladay 1、Holladay 2未校正、Haigis、Hoffer Q与Holladay 2圆锥角膜公式。而Vandevenne等[20]则报道:Barrett True K圆锥角膜MAE最小(0.43 D),优于Kane圆锥角膜(0.55 D)与SRK/T(0.56 D)。

1.3 前房深度异常

传统公式如SRK/T、Holladay 1和Hoffer Q公式由于未纳入前房深度进行ELP预测,受前房深度波动影响较大:在浅前房患者(前房深度≤ 3 mm)出现近视漂移,而在深前房患者(前房深度≥3.5 mm)出现远视漂移[21-22]。新公式如Kane、EVO、Pearl-DGS公式由于均纳入了前房深度和晶状体厚度进行ELP预测,被证明在极端前房深度与晶状体厚度组合中的预测准确性仍保持稳定[21]

2 眼部手术史

2.1 角膜屈光手术

角膜屈光手术由于改变角膜的前表面曲率,基于标准的角膜屈光指数1.337 5会错误估计总角膜屈光力;此外,将角膜屈光术后测量得到的角膜曲率直接代入普通白内障患者的IOL计算公式将产生明显预测误差。美国白内障与屈光手术协会(American Society of Cataract and Refractive Surgery,ASCRS)网站提供了角膜屈光术后白内障患者屈光力计算器(https://iolcalc.ascrs.org/),含准分子激光原位角膜磨镶术(laser in situ keratomileusis,LASIK)、准分子激光角膜切削术(photorefractive keratectomy,PRK)、放射状角膜切开术(radial keratectomy,RK)3类术式。ASCRS网站纳入了多种公式如Barrett True K、Double-K Holladay 1、Shammas-PL、Haigis-L、Potvin-Hill、OCT公式等,并能给出不同公式预测值的平均值、最小值与最大值。研究表明,ASCRS网站平均值[23-24]与Barre True K公式[25-26]是目前这类患者的最优选择。

2.2 角膜移植手术

角膜移植患者IOL计算的难点主要在于角膜植片、缝线等会改变角膜屈光力,角膜曲率测量不稳定甚至测量失败。
2.2.1 穿透性角膜移植
Katz等[27]观察到穿透性角膜移植联合白内障手术的患者(53例)易出现近视漂移,屈光预测准确性不佳,仅26%的患者术后预测误差在±2.0 D范围内;屈光预测误差与术前角膜曲率来源有关:来自手术眼测量值的误差最小,其次是对侧眼测量值,而使用与患者无关的特定值如42.6 D或43.81 D误差最大。Gruenauer-Kloevekorn等[28]则推荐对于拟行同时或序贯穿透性角膜移植与白内障手术的患者,若角膜屈光力测量值超出41 ~ 47 D范围,可考虑使用42.5 D进行IOL屈光力计算。Geerards等[29]回顾性分析了97例穿通性角膜移植联合白内障手术的患者资料,对于无法测出的角膜曲率的患者推荐使用7.49 mm(45 D)进行IOL屈光力计算。
2.2.2 板层角膜移植
板层角膜移植术后白内障患者易出现近视漂移,推荐选用SRK/T或Kane公式。Pellegrini等[30]纳入82例板层角膜移植术后白内障患者,发现9条公式(Barrett Universal Ⅱ、EVO、Haigis、Hoffer Q、Hoffer QST、Holladay 1、Holladay 2、Kane与SRK/T)均出现了近视漂移(–0.50~–0.23 D);其中,SRK/T与Kane公式的MedAE最小。
2.2.3 角膜内皮移植
Campbell等[31]则分析了Hoffer Q、SRK/T、Holladay 1、Barrett UniversalⅡ与Haigis公式在66例(86眼)角膜内皮移植联合白内障手术患者中的表现,结果显示使用由IOLMaster500/700(Zeiss)或Lenstar LS900(Haag-Streit)测量的模拟角膜曲率时,除Haigis公式外,其余公式均出现远视漂移(0.51 ~ 0.90 D),Haigis公式准确性最高;使用由Pentacam(Oculus)测量的总角膜屈光力时,Haigis公式出现明显近视误差(–0.52 D),其余四条公式的准确性明显提升。Augustin等[32]则观察到角膜内皮移植联合白内障手术患者的双眼屈光误差接近,可使用第一眼的屈光结果优化第二眼目标屈光度的设定。

2.3 有晶体眼人工晶状体植入术

有晶体眼人工晶状体( phakic intraocular lens, PIOL)会干扰生物测量仪对晶状体前表面的识别:IOLMaster700会将PIOL错误识别为晶状体前表面,从而低估前房深度、高估晶状体厚度,发生率高达62.5%~ 75.0%[29, 33]。笔者团队的研究表明,对于植入PIOL的长眼轴患者,该测量误差对公式预测值的影响很小,直接选用长眼轴患者的计算公式即可[33]。而对于眼轴长度<26 mm的患者,测量误差是否影响预测准确性尚需要进一步研究。

2.4 小梁切除术

小梁切除术后白内障患者与普通白内障患者相比,更易出现>1D的近视屈光误差;小梁切除术后眼压≤9 mmHg、白内障术后1个月内眼压升高幅度>50%是近视屈光误差的危险因素[34]。Bae等[35]发现SRK Ⅱ在小梁切除术后白内障患者中优于SRK/T公式,但样本量仅17例。尚需更大样本量、纳入更多公式,尤其是新公式进行研究。

2.5 玻璃体切除术

经扁平部玻璃体切除(pars plana vitrectomy,PPV)术后白内障患者易出现远视预测误差。笔者团队前期评价了111例(111眼)PPV术后白内障患者IOL计算公式的预测准确性,发现Kane公式无系统误差(0.09 D),而其余公式均出现了远视漂移( 0 .14~1 4 ~ 0.46 D);Kane、EVO与Barrett UniversalⅡ公式的预测准确性优于传统公式[36]。在211例(211眼)行联合硅油取出与白内障手术的患者中,笔者观察到类似的趋势:新公式优于传统公式,所有公式在长眼轴患者中预测准确性下降,约20%的患者屈光预测误差>1 D[37]。长眼轴、白内障术前硅油填充是PPV术后白内障患者发生远视预测误差>1 D的危险因素,而既往联合巩膜扣带术史、睫状沟植入IOL增加了近视预测误差>1 D的风险[38]。为了提升PPV术后白内障患者的屈光预测准确性,一方面,由于IOLMaster500和IOLMaster700会高估硅油填充眼的眼轴长度,建议使用以下方程[39]矫正测量眼轴后,再代入现有公式如Kane等计算:
校正眼轴 = 0.923 7×测量眼轴(IOLMaster500)+ 1.803 4
校正眼轴 = 0.947 8×测量眼轴(IOLMaster700)+ 1.198 4
另一方面,笔者提供了PPV术后白内障患者的IOL计算公式(http://ppv-iolcalculator.com/)。医生可以在界面选择白内障术前患者的玻璃体腔状态(是否填充硅油)、既往是否做过巩膜扣带术以及IOL植入位置(囊袋内/睫状沟),公式将给出预测值。

3 其他

3.1 睫状沟植入IOL

由于IOL植入睫状沟比植入囊袋内位置更靠前,术后患者的屈光状态会向近视漂移[40-41]。既往研究建议术者下调IOL屈光力(按植入囊袋内计算)后再植入睫状沟,从而降低近视误差[41-42]。需要注意的是,经典的IOL屈光力调整方案是依据SRK/T公式推算得到的;由于不同公式对ELP的预测存在差异,经典的调整方案在新公式中的表现尚需进一步验证。此外,睫状沟的位置与患者眼球的生物学参数密切相关,根据眼球解剖结构与IOL类型个性化调整ELP预测能进一步提高预测准确性[43-44]

3.2 IOL缝袢固定

IOL缝袢固定患者的预测准确性存在挑战。一方面,晶状体脱位影响了术前对前房深度与晶状体厚度的准确测量;另一方面,这部分患者的ELP除了与患者眼球解剖结构有关外,还受到手术方式的影响。Lian等[45]在158例先天性晶状体脱位患者中评价了Barrett UniversalⅡ、EVO、Haigis、Hoffer Q、Holladay 1、Kane、RBF 3.0与SRK/T公式的预测准确性发现,所有公式均出现了近视漂移,进行常数优化后,SRK/T与EVO公式准确性最高。先天性晶状体脱位患者的ELP与眼轴长度、角膜曲率、角膜横经与年龄相关,基于上述参数优化ELP的预测能进一步提升这部分患者的预测准确性[46]

3.3 先天性白内障患者

先天性白内障患者IOL计算公式选择需综合考虑患儿的年龄、眼球解剖特征、IOL植入时机与位置。Lee等[47]回顾性分析了338例先天性白内障患者(481眼),并根据植入IOL的年龄进行分组(0 ~ 24个月,25 ~ 60个月,61 ~ 120个月,121 ~ 203个月),发现5岁以下儿童的屈光预测误差更大,SRK Ⅱ公式在2~5岁儿童中的表现优于SRK/T,2岁以下儿童中两条公式表现类似。Eppley等[48]则进一步评价了Barrett Universal Ⅱ、Holladay 2、HoFFer Q与SRK/T公式在≤16岁先天性白内障患者的表现,Barrett Universal Ⅱ公式表现优于其他公式,SRK/T公式准确性最差。然而,对于眼轴长度<18 mm的患儿,SRK/T公式被证明优于其他传统公式[49]。对于Ⅱ期植入IOL的患儿,若IOL直接植入囊袋内,使用SRK/T公式能获得较好的预测准确性,而睫状沟植入的患儿需基于SRK/T公式预测值进行调整[50]

4 小结

由于大部分IOL计算公式是基于普通白内障患者研发,在极端眼球解剖参数或合并眼部手术史的白内障患者预测准确性下降。眼科医生需综合考虑患者眼球特征、病史与日常生活习惯设计目标屈光度并选用合适的IOL计算公式,保障患者术后屈光状态与术前设计一致。此外,特殊人群的公式准确性仍需要大样本研究进行验证,也亟需更多专为特殊白内障患者设计的新公式,进一步提升白内障手术的屈光预测准确性。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、de Vries NE, Webers CAB, Touwslager WRH, et al. Dissatisfaction after implantation of multifocal intraocular lenses[ J]. J Cataract Refract Surg, 2011, 37(5): 859-865.de Vries NE, Webers CAB, Touwslager WRH, et al. Dissatisfaction after implantation of multifocal intraocular lenses[ J]. J Cataract Refract Surg, 2011, 37(5): 859-865.
2、Seiler T, Wegner A, Senfft T, et al. Dissatisfaction after trifocal IOL implantation and its improvement by selective wavefront-guided LASIK[ J]. J Refract Surg, 2019, 35(6): 346-352.Seiler T, Wegner A, Senfft T, et al. Dissatisfaction after trifocal IOL implantation and its improvement by selective wavefront-guided LASIK[ J]. J Refract Surg, 2019, 35(6): 346-352.
3、Wang Q, Jiang W, Lin T, et al. Meta-analysis of accuracy of intraocular lens power calculation formulas in short eyes[ J]. Clin Exp Ophthalmol, 2018, 46(4): 356-363.Wang Q, Jiang W, Lin T, et al. Meta-analysis of accuracy of intraocular lens power calculation formulas in short eyes[ J]. Clin Exp Ophthalmol, 2018, 46(4): 356-363.
4、Li H, Ye Z, Luo Y, et al. Comparing the accuracy of the new-generation intraocular lens power calculation formulae in axial myopic eyes: a meta-analysis[ J]. Int Ophthalmol, 2022, 43: 619-633.Li H, Ye Z, Luo Y, et al. Comparing the accuracy of the new-generation intraocular lens power calculation formulae in axial myopic eyes: a meta-analysis[ J]. Int Ophthalmol, 2022, 43: 619-633.
5、Simon SS, Chee YE, Haddadin RI, et al. Achieving target refraction after cataract surgery[ J]. Ophthalmology, 2014, 121(2): 440-444.Simon SS, Chee YE, Haddadin RI, et al. Achieving target refraction after cataract surgery[ J]. Ophthalmology, 2014, 121(2): 440-444.
6、Melles RB, Kane JX, Olsen T, et al. Update on intraocular lens calculation formulas[ J]. Ophthalmology, 2019, 126(9): 1334-1335.Melles RB, Kane JX, Olsen T, et al. Update on intraocular lens calculation formulas[ J]. Ophthalmology, 2019, 126(9): 1334-1335.
7、Kane JX, Chang DF. Intraocular lens power formulas, biometry, and intraoperative aberrometry: a review[ J]. Ophthalmology, 2021, 128(11): e94-e114.Kane JX, Chang DF. Intraocular lens power formulas, biometry, and intraoperative aberrometry: a review[ J]. Ophthalmology, 2021, 128(11): e94-e114.
8、Cheng H, Wang L, Kane JX, et al. Accuracy of artificial intelligence formulas and axial length adjustments for highly myopic eyes[ J]. Am J Ophthalmol, 2021, 223: 100-107. Cheng H, Wang L, Kane JX, et al. Accuracy of artificial intelligence formulas and axial length adjustments for highly myopic eyes[ J]. Am J Ophthalmol, 2021, 223: 100-107.
9、Wang L, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm[ J]. J Cataract Refract Surg, 2011, 37(11): 2018-2027.Wang L, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm[ J]. J Cataract Refract Surg, 2011, 37(11): 2018-2027.
10、Wang L, Koch DD. Modified axial length adjustment formulas in long eyes[ J]. J Cataract Refract Surg, 2018, 44(11): 1396-1397.Wang L, Koch DD. Modified axial length adjustment formulas in long eyes[ J]. J Cataract Refract Surg, 2018, 44(11): 1396-1397.
11、Wang L, Holladay JT, Koch DD. Wang-Koch axial length adjustment for the Holladay 2 formula in long eyes[ J]. J Cataract Refract Surg,2018, 44(10): 1291-1292.Wang L, Holladay JT, Koch DD. Wang-Koch axial length adjustment for the Holladay 2 formula in long eyes[ J]. J Cataract Refract Surg,2018, 44(10): 1291-1292.
12、Zhang J, Tan X, Wang W, et al. Effect of axial length adjustment methods on intraocular lens power calculation in highly myopic eyes[ J]. Am J Ophthalmol, 2020, 214: 110-118.Zhang J, Tan X, Wang W, et al. Effect of axial length adjustment methods on intraocular lens power calculation in highly myopic eyes[ J]. Am J Ophthalmol, 2020, 214: 110-118.
13、Kieren D, David G, Shokufeh T, et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service[ J]. J Cataract Refract Surg, 2020, 46(1): 2-7.Kieren D, David G, Shokufeh T, et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service[ J]. J Cataract Refract Surg, 2020, 46(1): 2-7.
14、Lin P, Xu J, Miao A, et al. A comparative study on the accuracy of IOL calculation formulas in nanophthalmos and relative anterior microphthalmos[ J]. Am J Ophthalmol, 2023, 245: 61-69.Lin P, Xu J, Miao A, et al. A comparative study on the accuracy of IOL calculation formulas in nanophthalmos and relative anterior microphthalmos[ J]. Am J Ophthalmol, 2023, 245: 61-69.
15、Reitblat O, Levy A, Kleinmann G, et al. Intraocular lens power calculation for eyes with high and low average keratometry readings: comparison between various formulas[ J]. J Cataract Refract Surg, 2017, 43(9): 1149-1156.Reitblat O, Levy A, Kleinmann G, et al. Intraocular lens power calculation for eyes with high and low average keratometry readings: comparison between various formulas[ J]. J Cataract Refract Surg, 2017, 43(9): 1149-1156.
16、Qin Y, Liu L, Mao Y, et al. Accuracy of intraocular lens power calculation based on total keratometry in patients with flat and steep corneas[ J]. Am J Ophthalmol, 2023, 247: 103-110.Qin Y, Liu L, Mao Y, et al. Accuracy of intraocular lens power calculation based on total keratometry in patients with flat and steep corneas[ J]. Am J Ophthalmol, 2023, 247: 103-110.
17、Zhang C, Dai G, Pazo E, et al. Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature[ J]. PLoS One, 2020, 15(11): e0241630.Zhang C, Dai G, Pazo E, et al. Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature[ J]. PLoS One, 2020, 15(11): e0241630.
18、Savini G, Abbate R, Hoffer KJ, et al. Intraocular lens power calculation in eyes with keratoconus[ J]. J Cataract Refract Surg, 2019, 45(5): 576- 581.Savini G, Abbate R, Hoffer KJ, et al. Intraocular lens power calculation in eyes with keratoconus[ J]. J Cataract Refract Surg, 2019, 45(5): 576- 581.
19、Kane JX, Connell B, Yip H, et al. Accuracy of intraocular lens power formulas modified for patients with keratoconus[ J]. Ophthalmology, 2020, 127(8): 1037-1042.Kane JX, Connell B, Yip H, et al. Accuracy of intraocular lens power formulas modified for patients with keratoconus[ J]. Ophthalmology, 2020, 127(8): 1037-1042.
20、Vandevenne MMS, Webers VSC, Segers MHM, et al. Accuracy of intraocular lens calculations in eyes with keratoconus[ J]. J Cataract Refract Surg, 2023, 49(3): 229-233Vandevenne MMS, Webers VSC, Segers MHM, et al. Accuracy of intraocular lens calculations in eyes with keratoconus[ J]. J Cataract Refract Surg, 2023, 49(3): 229-233
21、Diogo HF, Elisa LM, Rita SP, et al. Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison[ J]. Br J Ophthalmol, 2022, 106(3):349-355.Diogo HF, Elisa LM, Rita SP, et al. Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison[ J]. Br J Ophthalmol, 2022, 106(3):349-355.
22、G%C3%B6kce%20SE%2C%20Montes%20De%20Oca%20I%2C%20Cooke%20DL%2C%20et%20al.%20Accuracy%20of%208%20intraocular%20%0Alens%20calculation%20formulas%20in%20relation%20to%20anterior%20chamber%20depth%20in%20%0Apatients%20with%20normal%20axial%20lengths%5B%20J%5D.%20J%20Cataract%20Refract%20Surg%2C%202018%2C%20%0A44(3)%3A%20362-368.G%C3%B6kce%20SE%2C%20Montes%20De%20Oca%20I%2C%20Cooke%20DL%2C%20et%20al.%20Accuracy%20of%208%20intraocular%20%0Alens%20calculation%20formulas%20in%20relation%20to%20anterior%20chamber%20depth%20in%20%0Apatients%20with%20normal%20axial%20lengths%5B%20J%5D.%20J%20Cataract%20Refract%20Surg%2C%202018%2C%20%0A44(3)%3A%20362-368.
23、Priyanka P, Zahra A, Viraj V, et al. Comparison of intraocular lens calculation methods after myopic laser-assisted in situ keratomileusis and radial keratotomy w ithout prior refractive data[ J]. Br J Ophthalmol, 2022, 106(1): 47-53.Priyanka P, Zahra A, Viraj V, et al. Comparison of intraocular lens calculation methods after myopic laser-assisted in situ keratomileusis and radial keratotomy w ithout prior refractive data[ J]. Br J Ophthalmol, 2022, 106(1): 47-53.
24、Pantanelli SM, Lin CC, Al-Mohtaseb Z, et al. Intraocular lens power calculation in eyes with previous excimer laser surgery for myopia: a report by the American academy of ophthalmology[ J]. Ophthalmology, 2021, 128(5): 781-792.Pantanelli SM, Lin CC, Al-Mohtaseb Z, et al. Intraocular lens power calculation in eyes with previous excimer laser surgery for myopia: a report by the American academy of ophthalmology[ J]. Ophthalmology, 2021, 128(5): 781-792.
25、Ferguson TJ, Downes RA, Randleman JB. IOL power calculations after LASIK or PRK: Barrett True-K biometer-only calculation strategy yields equivalent outcomes as a multiple formula approach[ J]. J Cataract Refract Surg, 2022, 48(7): 784-789.Ferguson TJ, Downes RA, Randleman JB. IOL power calculations after LASIK or PRK: Barrett True-K biometer-only calculation strategy yields equivalent outcomes as a multiple formula approach[ J]. J Cataract Refract Surg, 2022, 48(7): 784-789.
26、Turnbull AMJ, Crawford GJ, Barrett GD. Methods for intraocular lens power calculation in cataract surgery after radial keratotomy[ J]. Ophthalmology, 2020, 127(1): 45-51.Turnbull AMJ, Crawford GJ, Barrett GD. Methods for intraocular lens power calculation in cataract surgery after radial keratotomy[ J]. Ophthalmology, 2020, 127(1): 45-51.
27、Katz HR , Forster RK. Intraocular lens calculation in combined penetrating keratoplasty, cataract extraction and intraocular lens implantation[ J]. Ophthalmology, 1985, 92(9): 1203-1207.Katz HR , Forster RK. Intraocular lens calculation in combined penetrating keratoplasty, cataract extraction and intraocular lens implantation[ J]. Ophthalmology, 1985, 92(9): 1203-1207.
28、Gruenauer-Kloevekorn%20C%2C%20Kloevekorn-Norgall%20K%2C%20Duncker%20GIW%2C%20et%20%0Aal.%20Refractive%20error%20after%20triple%20and%20non-simultaneous%20procedures%3A%20is%20%0Athe%20application%20of%20a%20standard%20constant%20keratometry%20value%20in%20IOL%20power%20%0Acalculation%20advisable%3F%5B%20J%5D.%20Acta%20Ophthalmol%20Scand%2C%202006%2C%2084(5)%3A%20679-%0A683.Gruenauer-Kloevekorn%20C%2C%20Kloevekorn-Norgall%20K%2C%20Duncker%20GIW%2C%20et%20%0Aal.%20Refractive%20error%20after%20triple%20and%20non-simultaneous%20procedures%3A%20is%20%0Athe%20application%20of%20a%20standard%20constant%20keratometry%20value%20in%20IOL%20power%20%0Acalculation%20advisable%3F%5B%20J%5D.%20Acta%20Ophthalmol%20Scand%2C%202006%2C%2084(5)%3A%20679-%0A683.
29、Geerards AJ, Hassmann E, Beekhuis WH, et al. Triple procedure; analysis of outcome, refraction, and intraocular lens power calculation[ J]. Br J Ophthalmol, 1997, 81(9): 774-777.Geerards AJ, Hassmann E, Beekhuis WH, et al. Triple procedure; analysis of outcome, refraction, and intraocular lens power calculation[ J]. Br J Ophthalmol, 1997, 81(9): 774-777.
30、Marco P, Luca F, Niccolò S, et al. Accuracy of intraocular lens power calculation for cataract surgery after deep anterior lamellar keratoplasty[ J]. Clin Exp Ophthalmol, 2021, 50(1): 17-22.Marco P, Luca F, Niccolò S, et al. Accuracy of intraocular lens power calculation for cataract surgery after deep anterior lamellar keratoplasty[ J]. Clin Exp Ophthalmol, 2021, 50(1): 17-22.
31、Campbell JA, Ladas JG, Wang K, et al. Refractive accuracy in eyes undergoing combined cataract extraction and Descemet membrane endothelial keratoplasty[ J]. Br J Ophthalmol, 2022, 106(5): 623-627.Campbell JA, Ladas JG, Wang K, et al. Refractive accuracy in eyes undergoing combined cataract extraction and Descemet membrane endothelial keratoplasty[ J]. Br J Ophthalmol, 2022, 106(5): 623-627.
32、Augustin VA, Weller JM, Kruse FE, et al. Refractive outcomes after descemet membrane endothelial keratoplasty + cataract/intraocular lens triple procedure: a fellow eye comparison[ J]. Cornea, 2021, 40(7): 883-887.Augustin VA, Weller JM, Kruse FE, et al. Refractive outcomes after descemet membrane endothelial keratoplasty + cataract/intraocular lens triple procedure: a fellow eye comparison[ J]. Cornea, 2021, 40(7): 883-887.
33、Zhang J, Xia Z, Han X, et al. Accuracy of intraocular lens calculation formulas in patients undergoing combined phakic intraocular lens removal and cataract surgery[ J]. Am J Ophthalmol, 2022, 234: 241- 249.Zhang J, Xia Z, Han X, et al. Accuracy of intraocular lens calculation formulas in patients undergoing combined phakic intraocular lens removal and cataract surgery[ J]. Am J Ophthalmol, 2022, 234: 241- 249.
34、Yeh Oliver L, Bojikian Karine D, Slabaugh Mark A, et al. Refractive outcome of cataract surgery in eyes with prior trabeculectomy: risk factors for postoperative myopia[ J]. J Glaucoma, 2017, 26(1): 65-70.Yeh Oliver L, Bojikian Karine D, Slabaugh Mark A, et al. Refractive outcome of cataract surgery in eyes with prior trabeculectomy: risk factors for postoperative myopia[ J]. J Glaucoma, 2017, 26(1): 65-70.
35、Won BH, Ha LY, Do Wook K, et al. Effect of trabeculectomy on the accuracy of intraocular lens calculations in patients with open-angle glaucoma[ J]. Clin Exp Ophthalmol, 2016, 44(6): 465-71.Won BH, Ha LY, Do Wook K, et al. Effect of trabeculectomy on the accuracy of intraocular lens calculations in patients with open-angle glaucoma[ J]. Clin Exp Ophthalmol, 2016, 44(6): 465-71.
36、Tan X, Zhang J, Zhu Y, et al. Accuracy of new generation intraocular lens calculation formulas in vitrectomized eyes[ J]. Am J Ophthalmol, 2020, 217: 81-90.Tan X, Zhang J, Zhu Y, et al. Accuracy of new generation intraocular lens calculation formulas in vitrectomized eyes[ J]. Am J Ophthalmol, 2020, 217: 81-90.
37、Zhang J, Wang W, Liu Z, et al. Accuracy of new-generation intraocular lens calculation formulas in eyes undergoing combined silicone oil removal and cataract surgery[ J]. J Cataract Refract Surg, 2021, 47(5): 593-598.Zhang J, Wang W, Liu Z, et al. Accuracy of new-generation intraocular lens calculation formulas in eyes undergoing combined silicone oil removal and cataract surgery[ J]. J Cataract Refract Surg, 2021, 47(5): 593-598.
38、Zhang J, Han X, Chen X, et al. Choice of intraocular lens calculation formula for cataract patients with prior pars plana vitrectomy. J Cataract Refract Surg 2023; 49(9): 956-63.Zhang J, Han X, Chen X, et al. Choice of intraocular lens calculation formula for cataract patients with prior pars plana vitrectomy. J Cataract Refract Surg 2023; 49(9): 956-63.
39、Zhang J, Han X , Zhang M, et al. Comparison of axial length measurements in silicone oil-filled eyes using SS-OCT and partial coherence interferometry[ J]. J Cataract Refract Surg, 2022, 48(12): 1375-1380.Zhang J, Han X , Zhang M, et al. Comparison of axial length measurements in silicone oil-filled eyes using SS-OCT and partial coherence interferometry[ J]. J Cataract Refract Surg, 2022, 48(12): 1375-1380.
40、Hayashi K , Hayashi H, Nakao F, et al. Intraocular lens tilt and decentration, anterior chamber depth, and refractive error after trans-scleral suture fixation surgery 1[ J]. Ophthalmology, 1999, 106(5): 878- 882.Hayashi K , Hayashi H, Nakao F, et al. Intraocular lens tilt and decentration, anterior chamber depth, and refractive error after trans-scleral suture fixation surgery 1[ J]. Ophthalmology, 1999, 106(5): 878- 882.
41、Suto C, Hori S, Fukuyama E, et al. Adjusting intraocular lens power for sulcus fixation[ J]. J Cataract Refract Surg, 2003, 29(10): 1913-1917.Suto C, Hori S, Fukuyama E, et al. Adjusting intraocular lens power for sulcus fixation[ J]. J Cataract Refract Surg, 2003, 29(10): 1913-1917.
42、Dubey R, Birchall W, Grigg J. Improved refractive outcome for ciliary sulcus-implanted intraocular lenses[ J]. Ophthalmology, 2012, 119(2): 261-265.Dubey R, Birchall W, Grigg J. Improved refractive outcome for ciliary sulcus-implanted intraocular lenses[ J]. Ophthalmology, 2012, 119(2): 261-265.
43、Eom Y, Hwang HS, Hwang JY, et al. Posterior vault distance of ciliary sulcus–implanted three-piece intraocular lenses according to ciliary sulcus diameter[ J]. Am J Ophthalmol, 2017, 175: 52-59.Eom Y, Hwang HS, Hwang JY, et al. Posterior vault distance of ciliary sulcus–implanted three-piece intraocular lenses according to ciliary sulcus diameter[ J]. Am J Ophthalmol, 2017, 175: 52-59.
44、Eom Y, Song JS, Kim HM. Modified haigis formula effective lens position equation for ciliary sulcus–implanted intraocular lenses[ J]. Am J Ophthalmol, 2016, 161: 142-149.e2.Eom Y, Song JS, Kim HM. Modified haigis formula effective lens position equation for ciliary sulcus–implanted intraocular lenses[ J]. Am J Ophthalmol, 2016, 161: 142-149.e2.
45、Lian Z, Cao Q, Qi H, et al. Accuracy of intraocular lens power formulas for eyes with scleral-sutured intraocular lenses in congenital ectopia lentis[ J]. J Cataract \& Refract Surg, 2021, 48: 469-474.Lian Z, Cao Q, Qi H, et al. Accuracy of intraocular lens power formulas for eyes with scleral-sutured intraocular lenses in congenital ectopia lentis[ J]. J Cataract \& Refract Surg, 2021, 48: 469-474.
46、Zou M, Lian Z, Young CA, et al. Improving effective lens position prediction for transscleral fixation of intraocular lens among congenital ectopia lentis patients[ J]. Am J Ophthalmol, 2023, 252: 121-129.Zou M, Lian Z, Young CA, et al. Improving effective lens position prediction for transscleral fixation of intraocular lens among congenital ectopia lentis patients[ J]. Am J Ophthalmol, 2023, 252: 121-129.
47、Lee B, Lee SM, Kim JH, et al. Predictability of formulae for intraocular lens power calculation according to the age of implantation in paediatric cataract[ J]. Br J Ophthalmol, 2018, 103: 106-111.Lee B, Lee SM, Kim JH, et al. Predictability of formulae for intraocular lens power calculation according to the age of implantation in paediatric cataract[ J]. Br J Ophthalmol, 2018, 103: 106-111.
48、Eppley SE, Tadros D, Pasricha N, et al. Accuracy of a universal theoretical formula for lens power calculation in pediatric intraocular lens implantation[ J]. J Am Assoc Pediatr Ophthalmol Strabismus, 2021, 25(4): e17-e18.Eppley SE, Tadros D, Pasricha N, et al. Accuracy of a universal theoretical formula for lens power calculation in pediatric intraocular lens implantation[ J]. J Am Assoc Pediatr Ophthalmol Strabismus, 2021, 25(4): e17-e18.
49、Vanderveen DK , Trivedi RH, Nizam A, et al. Predictability of intraocular lens power calculation formulae in infantile eyes with unilateral congenital cataract: results from the Infant Aphakia Treatment Study[ J]. Am J Ophthalmol, 2013, 156(6): 1252-1260.e2.Vanderveen DK , Trivedi RH, Nizam A, et al. Predictability of intraocular lens power calculation formulae in infantile eyes with unilateral congenital cataract: results from the Infant Aphakia Treatment Study[ J]. Am J Ophthalmol, 2013, 156(6): 1252-1260.e2.
50、Liu Z, Zou Y, Yu Y, et al. Accuracy of intraocular lens power calculation in pediatric secondary implantation: In-the-bag versus sulcus placement[ J]. Am J Ophthalmol, 2023, 249: 137-143.Liu Z, Zou Y, Yu Y, et al. Accuracy of intraocular lens power calculation in pediatric secondary implantation: In-the-bag versus sulcus placement[ J]. Am J Ophthalmol, 2023, 249: 137-143.
1、国家自然科学基金(82070940)。
This work was supported by the National Natural Science Foundation of China (82070940).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录