您的位置: 首页 > 2022年4月 第37卷 第4期 > 文字全文
2022年4月 第37卷 第4期
目录

睑板腺功能障碍发病机制的研究进展

来源期刊: 眼科学报 | 2022年4月 第37卷 第4期 335-341 发布时间: 收稿时间:2023/1/29 14:51:50 阅读量:3481
作者:
0
关键词:
睑板腺功能障碍睑脂干眼发病机制动物模型
DOI:
10.3978/j.issn.1000-4432.2022.02.06
睑板腺功能障碍(meibomian gland dysfunction,MGD)是一种慢性、弥漫性的睑板腺病变,通常以睑板腺终末导管的阻塞或分泌的睑脂数量或质量发生改变为特征,临床上可以引起泪膜异常、角膜上皮损害、眼部刺激等干眼表现。MGD病因复杂且受多种因素影响,因此MGD发病机制的研究对于指导临床工作至关重要。本文对研究MGD的动物模型进行了介绍,并根据一些基础研究对MGD相关的细胞及分子机制等方面进行综述。
    睑板腺功能障碍(meibomian gland dysfunction,MGD)是一组慢性、弥漫性的睑板腺异常,主要表现为末端导管阻塞、脂质的质或量改变等[1],最终引起泪膜稳定性改变,导致眼部炎症、眼表细胞损伤及刺激不适感。MGD的特征是末端导管的阻塞和腺体排泄物的挤出引起的睑板腺孔的堵塞[2]睑板腺功能障碍会引起一系列眼部并发症,如睑缘炎、睑腺炎、干眼、角膜疾病等。MGD是蒸发过强型干眼的主要原因[3],高达70.3%的干眼患者被发现患有MGD[4]。年龄、眼表长期慢性炎症、雄激素缺乏、糖尿病、治疗高血压或抗抑郁药物的应用、长时间使用电子设备、高油高糖饮食习惯等都是MGD的危险因素[5-6]。MGD常见治疗方法包括维持眼睑卫生、热敷和抗炎治疗[7-9]。目前尚无有效的MGD治疗方法,最主要的原因就是人们对其发病机制还缺乏深入了解。鉴于MGD在干眼疾病中的重要性,近年来研究者对于MGD发病机制的研究日益重视。本文将根据近年来对睑板腺脂质分子组成、脂质分泌、脂质合成能力、脂质介质以及神经和氧化应激等方面在MGD发病中等重要作用的研究进展,对MGD相关的细胞和分子机制进行综述。

1 MGD的研究模型

    体内研究的动物模型和体外研究的细胞或器官模型已被证明是基础研究中至关重要的工具。这些模型的应用让人们了解了更多关于睑板腺和MGD的知识。

1.1 体内模型

    MGD的理想模型应包括人类疾病的解剖特征,如腺体阻塞、导管角化和导管扩张。与人类疾病一样,可观察的特征应以慢性或进行性方式扩散影响整个眼睑。理想的情况下,MGD的 诱导成功率应该很高,所涉及的动物应该具有正常的寿命,避免过度疼痛,并且很少或几乎没有其他全身器官的参与[10]。Eom等[11]用烧灼法封闭了兔子的睑板腺口来诱导兔子的MGD模型,以确
定MGD是否可以增加泪膜渗透压。Miyake等[12]则通过给HR-1无毛小鼠喂食指定含量脂质的特殊饮食来诱导形成MGD。衰老的小鼠可以用于年龄相关性MGD的研究模型[13-15]。另外,包含不同基因敲除株的小鼠模型,如Eda mutant (Eda?/?)Tabby mice、Sod1?/? mice等,已被鉴定能诱导形成MGD,可用于MGD发病机理的研究[15]

1.2 体外模型

    为探究睑板腺的生理调控, Liu 等[16]首次建立了关于维持人原代睑板腺上皮细胞的培养系统,并将其永生化,建立了人睑板腺上皮细胞(human meibomian gland epithelial cells,HMGECs)细胞系。在体外,血清会诱导人睑板腺上皮细胞的分化和中性脂质的积累,血清的诱导作用会使内质网、高尔基体和囊泡有关的基因表达显著增加[17],推测这会促进细胞脂质的分泌。Asano等[18]在此基础上,用人睑板腺上皮细胞系建立了3D睑板腺培养模型。在该模型下,即使不使用血清处理,HMGECs仍具有分化的能力,但仅达到分化状态,不能形成成熟的睑板腺细胞。在研究大鼠睑板腺的离子转运时,Yu等[19]建立了新型体外原代大鼠睑板腺细胞共培养系统,将传代的大鼠睑板腺细胞在气液界面培养成平板状和在基质胶基质中培养成球体。这2个睑板腺细胞培养模型可用于睑板腺相关的离子迁移研究,并提供了离子通道在睑板腺生理作用上的解释。Maskin等[20]在分离兔睑板腺细胞时,用胶原蛋白凝胶进行培养,建立了兔睑板腺细胞的体外培养系统,可以用来探索在细胞水平上睑脂的产生和睑板腺上皮细胞增殖和分化的调控机制。但体外的细胞系研究主要局限于睑板腺上皮细胞,无法观测到睑板腺导管的功能和病理,因此Xu等[21]创建了一种小鼠睑板腺的新型器官培养系统,通过提供不同的培养条件,在体外培养睑板腺外植体。这样可以分别观察腺泡和导管的形态和功能变化。这种新型的器官型培养模型可用于体外研究睑板腺的病理过程。

2 睑板腺功能障碍的发病机制

2.1 睑板腺脂质构成改变在MGD中的意义

    睑板腺的主要功能是合成和分泌脂质。睑板腺分泌的睑脂是由极性脂质(磷脂)和非极性脂质(胆固醇、蜡酯、胆固醇酯)组成的。磷脂被认为是极性脂质中最重要的一类,其作用被认为是形成与泪膜的水层和疏水性脂质层的两亲性亚层[22]。在对小鼠的研究[23]中,成年的雄性和雌性小鼠以相似的方式合成睑脂,并且具有相同的化学组成,说明性别对成年小鼠脂质的合成影响很小。也有研究人员[24]在MGD患者与水液分泌不足型干眼患者的睑脂成分比较中发现睑板腺脂肪酸的成分发生了改变,其中MGD患者中支链脂肪酸含量显著升高,而饱和脂肪酸含量则减少,主要为棕榈酸和硬脂酸的含量较低。支链脂肪酸的增加说明了睑板腺分泌的脂质中有含有更多的非极性脂质。这些差异可能会对泪膜脂质层的流动性和稳定性产生影响。因此,睑板腺脂肪酸成分的改变,特别是支链脂肪酸的增加,可能是睑板腺功能障碍的标志。睑脂成分的改变也会引起相应的临床症状。在对睑脂中的鞘磷脂(sphingomyelin,SPL)这一成分进行研究时,有学者[25-26]发现鞘磷脂的衍生物具有生物活性,并调节重要的细胞功能(凋亡、增殖、细胞迁移和炎症),如神经酰胺(Cer)有促凋亡作用,鞘氨醇1 -磷酸酯(S1P)有抗凋亡作用。睑脂质量较差的患者有更少的Cer、S1P,但Cer/S1P的比例增高[27],说明Cer的含量相对增高,会表现出促凋亡的作用。这表明MGD的临床症状可能与SPL成分的变化相关。

2.2 各种原因引起的腺体导管阻塞

    2.2.1 炎性物质导致的导管阻塞
    中性粒细胞参与体内的急性炎症的过程[28]。而MGD作为一种慢性炎症疾病,中性粒细胞并不直接参与MGD的形成,而是常在体内聚集成团形成中性粒细胞胞外陷阱(neutrophil extracellular traps,N ETs),形成对细菌的抵抗能力[29]。 研究[30]发现:在睑缘炎患者的眼部排出液中,检测出含有聚集的嗜中性粒细胞胞外陷阱(aggregated neutrophil extracellular traps,aggNET)。MGD患者的眼泪液显示中性粒细胞趋化因子(C5a、IL-6、IL-8和IL-18)升高。C5a可以吸引和引发嗜中性粒细胞在眼表产生NETs,IL-8是由人角膜上皮细胞和角质形成细胞合成和释放的嗜中性粒细胞的另一种化学引诱剂[31]。虽然NETs表现出一定的抗炎特性,但它们也具有堵塞睑板腺导管的风险[30,32]。限制NETs形成的干预措施(例如PADI4抑制剂、DNase1/IL-3)是治疗MGD的候选方法[29]。有研究[33-34]指出:在糖尿病患者的腺泡和腺泡壁上有很多高密度阴影,这与正常人不同,提示腺泡有异常,腺泡周围可见炎性细胞浸润,表明炎症可能在糖尿病MGD病理变化的发生中起作用。
    2.2.2 过度角质化引起的导管阻塞
    角质化过度是阻塞性MGD的主要原因,会导致腺体扩张和萎缩,孔口阻塞,睑板淤滞和导管囊性扩张,从而导致继发性腺泡萎缩和腺体脱落[35]。促炎因子IL-1β会介导小鼠睑板腺外植体中Krt1的表达增加和导管的高度角质化[21]。Krt1作为上皮细胞完全角化的生物标志物[36],可以在在腺体的排泄道中被检测到。也有研究[37]发现:在ApoE敲除小鼠中,上皮角质化标记分子K10和FABP5在小鼠睑板腺导管和腺泡细胞中表达上调,这表明在患有高脂血症老鼠的睑板腺中发生了角化过度。

2.3 脂质形成相关分子PPAR-γ和SREBPs的表达丧失

    过氧化物酶增殖物激活受体 ( peroxisome proliferator-activated receptor,PPAR)是一类配体激活的核转录因子超家族成员。PPAR包括PPAR-α、PPAR-β和PPAR-γ三种表型,PPAR-γ亚型是研究最多的受体,被认为是脂肪形成和脂肪细胞分化的关键调节剂[38]。研究[39]表明:在老年小鼠中,PPAR-γ受体信号的改变会引起相应的脂质合成和腺体萎缩,这可能为年龄相关性睑板腺功能障碍的发生打下了基础。同样,也有研究[13-14]发现:在衰老小鼠的睑板腺中,脂质敏感性核受体PPAR-γ的表达减少。这些研究表明了睑板腺中的脂质合成受到PPAR-γ核转录因子的调节,如果PPAR-γ的表达丧失,则会产生脂质合成减少,导致年龄相关性睑板腺功能障碍。PPAR-γ的激动剂,如噻唑烷二酮[40]和罗格列酮[13,40-41]分别增加了糖尿病患者的皮脂产生和皮脂细胞培养物中的脂质产生。此外,IL-4可以磷酸化STAT6并相应激活PPAR-γ信号通路,从而增加睑板腺细胞中脂质的合成[42]。这些可能为睑板腺功能障碍提供了新的思路。
    胆固醇调节元件结合蛋白(sterol-regulator y element binding proteins,SREBPs)是位于细胞内质网中的胆固醇敏感器,通过Insig-Srebp-Scap途径对细胞内胆固醇进行反馈调节。脂肪生成的2种关键酶,即ATP-柠檬酸裂合酶和乙酰辅酶A合酶的mRNA水平会被雄激素所上调[43]。且这2种酶都被证实存在于睑板腺之中[43]。雄激素对这2种脂肪生成关键酶活性的调节至少部分是通过SREBPs转录因子的作用来介导的[44]。相应地,高糖会降低SREBP-1和胰岛素样生长因子受体1(insulin-like growth factor-1 receptor,IGF-1R)在人类睑板腺上皮细胞中的水平[45]。IGF-1可促进HMEGCs的分化和脂质蓄积,同时也可促进SREBP-1的水平[46]。IGF-1R的减少会导致相应的IGF-1也无法发挥作用。这表明高葡萄糖对HMGECs有毒性,胰岛素抵抗/缺乏和高血糖对HMGECs有害,并且II型糖尿病是MGD的危险因素。最近一项新研究[47]发现Hedgehog信号通路参与调节小鼠睑板腺上皮细胞的增殖和分化。该研究通过作用于Hedehog的受体——Smoothened,发现Smoothened的拮抗剂(环巴胺)会促进SREBPs的表达和脂质的产生,而Smoothened的激动剂抑制SREBPs的表达和脂质的蓄积。Hedgehog信号通路似乎在小鼠睑板腺上皮细胞的增殖和分化中起重要作用。SREBPs作为脂质生成调节的关键因子,而IGF-1和Smoothened拮抗剂能促进其表达,从而促进脂质的产生和蓄积。这可能为治疗睑板腺功能障碍提供了潜在的治疗方法。

2.4 脂质介质EPA的增加

    研究[48]发现:在MGD患者中,脂质介质水平有所增加。脂质介质是小的、具有生物活性的信号脂质,参与一般性炎症以及眼表炎症[49]。不同的脂质介质可用于评估不同方面的眼表疾病,如5-羟基二十碳四烯酸、白三烯和18-羟基二十碳五烯,这3种脂质介质能够预测睑板腺的临床梗阻,可能提示有蒸发型干眼或MGD[48]。二十碳五烯酸(eicosapentaenoic acid,EPA)也是参与眼表炎症的重要介体[48]。二十碳五烯酸[50]会上调与脂质合成和诱导细胞周期退出的相关基因的表达来促进脂质合成和细胞分化。

2.5 神经支配的改变

    支配睑板腺的神经有自主神经和感觉神经,节前自主神经纤维在神经节处与神经节后纤维形成突触,神经节后纤维然后投射到睑板腺里[51]。睑板腺腺泡被无髓神经和末端的轴突所包围,位于末端的囊泡会释放神经肽P物质、降钙素基因相关肽(calcitonin gene related peptide,CGRP)、血管活性肠肽(vasoactive intestinal peptide,VIP)、神经肽Y(neuropeptide Y,NPY)等物质[52]。相应的在睑板腺导管和腺泡细胞中发现了VIP、S P、NPY这些物质的受体,并且这些受体可能参与了睑板腺分泌的调节[53]。睑板腺受副交感神经纤维支配,而交感神经和感觉神经元的贡献较小[54]。副交感神经兴奋后,会分泌VIP。 而VIP作为一个刺激因素,可促进人泪腺和眼睑分泌泪液和睑脂[55]。在糖尿病患者中,神经系统病变是其常见的并发症,这可能会导致睑板腺的神经支配功能障碍[33]。糖尿病患者表现出的角膜敏感性降低和眨眼运动的减少,导致脂质的排除减少、腺管阻塞、腺体分泌停滞以及睑板腺进一步功能障碍[56]

2.6 氧化应激反应

    Bu等[37]认为MGD可能与脂质代谢有关。作者假设腺泡细胞中过多的脂质蓄积可能诱导了活性氧的产生。在后续对ApoE被敲除小鼠的睑板腺的研究中,作者发现了氧化应激标志物3-NT、4-HNE和NOX-4的表达相对增加,证实了氧化应激的存在。氧化应激可以造成细胞损伤继而引起组织发生炎症反应。所以脂质氧化可能是导致载脂蛋白E基因(ApoE)被敲除小鼠发生MGD的另一种致病机制。氧化应激也可以调节PPAR- γ的表达[57]。在该研究中也检测到PPAR-γ的下调。相应的使用PPAR-γ激动剂罗格列酮可维持相对健康的眼表状况。因此,作者认为PPAR-γ激动剂可以通过调节睑板腺组织的氧化应激对高脂血症引起的MGD具有治疗作用。

2.7 CD147的丢失

    CD147是一种跨膜蛋白,可通过诱导基质金属蛋白酶(matrix metalloproteinase,MMP)来促进组织重塑,从而调节睑板腺细胞的分化和活性。MMP活性的稳定对维持眼表健康来说至关重要,MMP失衡则会产生相应的疾病和炎症[58]。研究[59]发现:CD147沿着基底细胞定位,并存在于由腺泡分化而来的睑板腺细胞中的离散膜结构域内。在CD147敲除小鼠的睑板腺中,上睑板和下睑板中的睑板腺数量明显减少。该研究数据表明,在睑板细胞中的MMP的活性取决于CD147,并认为CD147在维持睑板腺正常发育和功能中发挥一定的作用。此外,作者表明在小鼠中CD147的靶向缺失会导致睑板腺畸形,并在体内损害睑板细胞功能。

2.8 色素上皮衍生因子的表达降低

    证据[60]表明:在衰老的人和小鼠的睑板腺中,细胞增殖在很大程度上减少了,这与组织损失和总的细胞数量减少有关。睑板腺中,祖细胞的数量在老年小鼠中也大大减少了[61]。祖细胞是形成腺泡基底层并随后成为产生脂质的成熟睑板腺细胞的关键来源[62]。研究[63]表明:色素上皮衍生因子(pigment epithelium-derived factor,PEDF)在腺泡基底细胞中的表达高于分化的腺泡细胞,老年小鼠的基础PEDF水平显著降低,表明PEDF在年龄相关性MGD中起关键作用。证明PEDF能够通过诱导基底细胞增殖来有效地恢复衰老小鼠的睑板腺功能,从而支持睑板腺组织的快速更新需求。这提供了一种新的见解,即基底细胞增殖的诱导可能是一种促进年龄相关性MGD中睑板腺再生的新方法。

3 结语

    睑板腺导管阻塞、脂肪形成相关分子的表达丧失、神经支配的改变、氧化应激反应、CD147的丢失和PEDF的表达降低等都可以成为MGD的发病机制。糖尿病患者和老年患者可以通过几种不同的机制导致睑板腺功能障碍。在了解睑板腺功能障碍的发病机制后,根据其机制,一些新的治疗思路也被提出,如PPAR-γ的激动剂(罗格列酮、噻唑烷二酮和EPA)可促进睑板腺脂质的产生,来治疗年龄相关性MGD;限制N ETs形成的干预措施(例如PADI4抑制剂、DNase1/1L-3)是治疗阻塞性MGD的候选方法;IL-4作为PPAR-γ的上游调控因子,可以磷酸化STAT6并相应激活PPAR-γ信号通路,治疗年龄相关性MGD;PEDF则可以诱导睑板基底细胞增殖来治疗年龄相关性MGD。神经支配减少诱导产生的MGD,可以尝试通过给予神经生长因子类药物来促进神经的恢复,治疗糖尿病性MGD。同样,外源性CD147的补足来增加睑板细胞MMP活性和抗炎药物抑制NETs的产生,也可以治疗相关的MGD。但目前的研究多建立在动物上,相关的一些临床引用也有待进一步去验证。

开放获取声明

    本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Liu R, Rong B, Tu P, et al. Analysis of cytokine levels in tears and clinical correlations after intense pulsed light treating meibomian gland dysfunction[ J]. Am J Ophthalmol, 2017, 183: 81-90.
2、Villani E, Marelli L, Dellavalle A, et al. Latest evidences on meibomian gland dysfunction diagnosis and management[ J]. Ocul Surf, 2020, 18(4): 871-892.
3、Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: the role of gland dysfunction in dry eye disease[ J].Ophthalmology, 2017, 124(11S): S20-S26.
4、Alghamdi YA, Mercado C, McClellan AL, et al. Epidemiology of meibomian gland dysfunction in an elderly population[ J]. Cornea, 2016, 35(6): 731-735.
5、Rabensteiner DF, Aminfar H, Boldin I, et al. The prevalence of meibomian gland dysfunction, tear film and ocular surface parameters in an Austrian dry eye clinic population[ J]. Acta Ophthalmol, 2018, 96(6): e707-e711.
6、Nichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary[ J]. Invest Ophthalmol Vis Sci, 2011, 52(4): 1922-1929.
7、Knop E, Knop N, Millar T, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland[ J]. Invest Ophthalmol Vis Sci, 2011, 52(4): 1938-1978.
8、Amano S. Meibomian gland dysfunction: recent progress worldwide and in Japan[ J]. Invest Ophthalmol Vis Sci, 2018, 59(14): DES87-DES93.
9、Sabeti S, Kheirkhah A, Yin J, et al. Management of meibomian gland dysfunction: a review[ J]. Surv Ophthalmol, 2020, 65(2): 205-217.
10、Tong L, Gupta PK. Need for animal models of meibomian gland dysfunction[ J]. Ophthalmol Ther, 2016, 5(2): 129-134.
11、Eom Y, Han JY, Kang B, et al. Meibomian glands and ocular surface changes after closure of meibomian gland orifices in rabbits[ J]. Cornea, 2018, 37(2): 218-226.
12、Miyake H, Oda T, Katsuta O, et al. Meibomian gland dysfunction model in hairless mice fed a special diet with limited lipid content[ J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3268-3275.
13、Jester JV, Potma E, Brown DJ. PPARγ regulates mouse meibocyte differentiation and lipid synthesis[ J]. Ocul Surf, 2016, 14(4): 484-494.
14、Yoon CH, Ryu JS, Hwang HS, et al. Comparative analysis of age-related changes in lacrimal glands and meibomian glands of a C57BL/6 male mouse model[ J]. Int J Mol Sci, 2020, 21(11): 4169.
15、Sun M, Moreno IY, Dang M, et al. Meibomian gland dysfunction: what have animal models taught us?[ J]. Int J Mol Sci, 2020, 21(22): 8822.
16、Liu S, Hatton MP, Khandelwal P, et al. Culture, immortalization, and characterization of human meibomian gland epithelial cells[ J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 3993-4005.
17、Sullivan DA, Liu Y, Kam WR, et al. Serum-induced differentiation of human meibomian gland epithelial cells[ J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3866-3877.
18、Asano N, Hampel U, Garreis F, et al. Differentiation patterns of immortalized human meibomian gland epithelial cells in three-dimensional culture[J]. Invest Ophthalmol Vis Sci, 2018, 59(3): 1343-1353.
19、Yu D, Davis RM, Aita M, et al. Characterization of rat meibomian gland ion and fluid transport[ J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 2328-2343.
20、Maskin SL, Tseng SC. Culture of rabbit meibomian gland using collagen gel[ J]. Invest Ophthalmol Vis Sci, 1991, 32(1): 214-223.
21、Xu KK , Huang YK , Liu X, et al. Organotypic culture of mouse meibomian gland: a novel model to study meibomian gland dysfunction in vitro[ J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 30.
22、Campbell D, Griffiths G, Tighe BJ. Tear analysis and lens-tear interactions: part II. Ocular lipids-nature and fate of meibomian gland phospholipids[ J]. Cornea, 2011, 30(3): 325-332.
23、Butovich IA, McMahon A, Wojtowicz JC, et al. Effects of sex (or lack thereof ) on meibogenesis in mice (Mus musculus): comparative evaluation of lipidomes and transcriptomes of male and female tarsal plates[ J]. Ocul Surf, 2019, 17(4): 793-808.
24、Joffre C, Souchier M, Grégoire S, et al. Differences in meibomian fatty acid composition in patients with meibomian gland dysfunction and aqueous-deficient dry eye[ J]. Br J Ophthalmol, 2008, 92(1): 116-119.
25、Gangoiti P, Camacho L, Arana L, et al. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease[ J]. Prog Lipid Res, 2010, 49(4): 316-334.
26、Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function[ J]. J Lipid Res, 2009, 50 Suppl: S91-S96.
27、Paranjpe V, Tan J, Nguyen J, et al. Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition[ J]. Ocul Surf, 2019, 17(2): 318-326.
28、Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation[ J]. Blood, 2019, 133(20): 2178-2185.
29、Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[ J]. Science, 2004, 303(5663): 1532-1535.
30、Mahajan A, Hasíková L, Hampel U, et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation[ J]. Ocul Surf, 2021, 20: 1-12.
31、Cubitt CL, Tang Q, Monteiro CA, et al. IL-8 gene expression in cultures of human corneal epithelial cells and keratocytes[ J]. Invest Ophthalmol Vis Sci, 1993, 34(11): 3199-3206.
32、Reyes NJ, Yu C, Mathew R, et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice[ J]. Sci Transl Med, 2018, 10(451): eaas9164.
33、Yu T, Shi WY, Song AP, et al. Changes of meibomian glands in patients with type 2 diabetes mellitus[J]. Int J Ophthalmol, 2016, 9(12): 1740-1744.
34、Yu T, Han XG, Gao Y, et al. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus[ J]. Int J Ophthalmol, 2019, 12(9): 1415-1419.
35、Geerling G, Baudouin C, Aragona P, et al. Emerging strategies for the diagnosis and treatment of meibomian gland dysfunction: Proceedings of the OCEAN group meeting[ J]. Ocul Surf, 2017, 15(2): 179-192.
36、Parfitt GJ, Xie Y, Reid KM, et al. A novel immunofluorescent computed tomography (ICT) method to localise and quantify multiple antigens in large tissue volumes at high resolution[J]. PLoS One, 2012, 7(12): e53245.
37、Bu J, Wu Y, Cai X, et al. Hyperlipidemia induces meibomian gland dysfunction[ J]. Ocul Surf, 2019, 17(4): 777-786.
38、Siersbaek R , Nielsen R , Mandrup S. PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies[ J]. FEBS Lett, 2010, 584(15): 3242-3249.
39、Nien CJ, Massei S, Lin G, et al. The development of meibomian glands in mice[ J]. Mol Vis, 2010, 16: 1132-1140.
40、Trivedi NR , Cong Z, Nelson AM, et al. Peroxisome proliferatoractivated receptors increase human sebum production[ J]. J Invest Dermatol, 2006, 126(9): 2002-2009.
41、Kim SW, Xie Y, Nguyen PQ, et al. PPARγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (hMGEC)[ J]. Ocul Surf, 2018, 16(4): 463-469.
42、Jun I, Kim BR, Park SY, et al. Interleukin-4 stimulates lipogenesis in meibocytes by activating the STAT6/PPARγ signaling pathway[ J]. Ocul Surf, 2020, 18(4): 575-582.
43、Schirra F, Suzuki T, Richards SM, et al. Androgen control of gene expression in the mouse meibomian gland[ J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3666-3675.
44、Schirra F, Richards SM, Liu M, et al. Androgen regulation of lipogenic pathways in the mouse meibomian gland[ J]. Exp Eye Res, 2006, 83(2): 291-296.
45、Ding J, Liu Y, Sullivan DA. Effects of insulin and high glucose on human meibomian gland epithelial cells[ J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7814-7820.
46、Liu Y, Ding J. The combined effect of azithromycin and insulin-like growth factor-1 on cultured human meibomian gland epithelial cells[ J]. Invest Ophthalmol Vis Sci, 2014, 55(9): 5596-5601.
47、Qu JY, Xiao YT, Zhang YY, et al. Hedgehog signaling pathway regulates the proliferation and differentiation of rat meibomian gland epithelial cells[ J]. Invest Ophthalmol Vis Sci, 2021, 62(2): 33.
48、Ambaw YA, Chao C, Ji S, et al. Tear eicosanoids in healthy people and ocular surface disease[ J]. Sci Rep, 2018, 8(1): 11296.
49、Ambaw YA, Timbadia DP, Raida M, et al. Profile of tear lipid mediator as a biomarker of inflammation for meibomian gland dysfunction and ocular surface diseases: Standard operating procedures[ J]. Ocul Surf 2020. doi:10.1016/j.jtos.2020.09.008.
50、Kim SW, Rho CR, Kim J, et al. Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC)[ J]. Ocul Surf, 2020, 18(3): 427-437.
51、Cox SM, Nichols JJ. The neurobiology of the meibomian glands[ J]. Ocul Surf, 2014, 12(3): 167-177.
52、Osae EA, Steven P, Redfern R, et al. Dyslipidemia and meibomian gland dysfunction: utility of lipidomics and experimental prospects with a diet-induced obesity mouse model[ J]. Int J Mol Sci, 2019, 20(14): 3505.
53、Zhu HY, Riau AK, Barathi VA, et al. Expression of neural receptors in mouse meibomian gland[ J]. Cornea, 2010, 29(7): 794-801.
54、Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland[ J]. Invest Ophthalmol Vis Sci, 1996, 37(1): 238-245.
55、Seifert P, Spitznas M. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands[ J]. Exp Eye Res, 1999, 68(6): 685-692.
56、Sa?d?k HM, Ugurbas SH, Can M, et al. Tear film osmolarity in patients with diabetes mellitus[ J]. Ophthalmic Res, 2013, 50(1): 1-5.
57、Sommer M, Wolf G. Rosiglitazone increases PPARgamma in renal tubular epithelial cells and protects against damage by hydrogen peroxide[ J]. Am J Nephrol, 2007, 27(4): 425-434.
58、Sakimoto T, Sawa M. Metalloproteinases in corneal diseases: degradation and processing[ J]. Cornea, 2012, 31 Suppl 1: S50-S56.
59、Mauris J, Dieckow J, Schob S, et al. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland[ J]. Cell Death Dis, 2015, 6: e1726.
60、Nien CJ, Paugh JR , Massei S, et al. Age-related changes in the meibomian gland[ J]. Exp Eye Res, 2009, 89(6): 1021-1027.
61、Parfitt GJ, Lewis PN, Young RD, et al. Renewal of the holocrine mei bomian gland s by label-retaining , unipotent epithelial progenitors[ J]. Stem Cell Reports, 2016, 7(3): 399-410.
62、Olami Y, Zajicek G, Cogan M, et al. Turnover and migration of meibomian gland cells in rats' eyelids[ J]. Ophthalmic Res, 2001, 33(3): 170-175.
63、Fan NW, Ho TC, Lin EH, et al. Pigment epithelium-derived factor peptide reverses mouse age-related meibomian gland atrophy[ J]. Exp Eye Res, 2019, 185: 107678.
1、黄雨,李洁,黎冬冬等.强脉冲光联合睑板腺按摩治疗MGD相关性干眼疗效的Meta分析[J].国际眼科杂志,2023,23(04):616-623.
2、张敬轩,李红霞.干眼治疗的研究进展[J].系统医学,2023,8(03):194-198.DOI:10.19368/j.cnki.2096-1782.2023.03.194.
3、牛晴,耿玉倩,刘昳.睑板腺功能障碍中西医治疗研究进展[J].辽宁中医药大学学报,2023,25(07):207-213.DOI:10.13194/j.issn.1673-842x.2023.07.043.
4、张婉妮,吴丹巍,白旭东.蠕形螨感染与睑板腺功能障碍的研究进展[J].中国中医眼科杂志,2022,32(12):991-994.DOI:10.13444/j.cnki.zgzyykzz.2022.12.017.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
推荐阅读
出版者信息
中山眼科



中山大学