您的位置: 首页 > 2021年10月 第36卷 第10期 > 文字全文
2021年10月 第36卷 第10期
目录

体素水平MR图像分析在眼科疾病中的应用进展

来源期刊: 眼科学报 | 2021年10月 第36卷 第10期 816-824 发布时间: 收稿时间:2023/7/28 16:13:49 阅读量:2212
作者:
0
关键词:
基于体素的形态学分析青光眼视神经炎弱视斜视视网膜脱离急性眼痛失明
DOI:
10.3978/j.issn.1000-4432.2021.07.24
近些年来,眼科疾病的临床诊断治疗及其病理发展的研究对医学影像学技术的要求日益增高,磁共振技术已广泛应用于研究眼科疾病的发病机制、治疗和分析预后。基于体素的形态学分析(voxel-based morphometry,VBM)作为一种新型的磁共振图像的分析方式,VBM可以对活体脑进行无创的形态学研究,定量分析磁共振图像中每一个单独体素内的白质、灰质的密度和体积的变化,从而反映对应区域的解剖学结构差异,能发现常规MRI不能检测到的灰质和白质结构的细微改变。不同于那些只作用于预设的感兴趣区域的分析方法,VBM完全没有偏向性,它探测全脑的异常变化,无需对感兴趣区的先验性假设,不会被研究人员的主观思维影响。这提供了一种全新的方法来探索眼科疾病中的神经病理变化,尤其在青光眼和弱视的研究中应用最多。
磁共振成像不仅可以揭示解剖学差异,也可以提供一些生理生化信息,并且完全没有辐射,现已经是最重要的医学影像学方法之一。基于体素的形态学分析(voxel-based morphometry,VBM)是一种在体素层面测量组织的密度变化的全自动全脑分析技术[1]。VBM定量分析磁共振图像中每一个单独体素内的白质、灰质的密度和体积的变化,从而反映对应区域的解剖学结构差异。VBM可以对活体脑进行无创的形态学研究,能发现常规MRI不能检测到的灰质和白质结构的细微改变。不同于那些只作用于预设的感兴趣区域的分析方法,VBM完全没有偏向性,它探测全脑的异常变化,无需对感兴趣区的先验性假设,不会被研究人员的主观思维影响。VBM的基本方法是先将各高分辨率MR图像套用到模版图片中,从而将他们标准化到一个相同的立体空间;然后从已在空间上标准化的图像中分离并提取灰质、白质和脑脊髓液,并将其作平滑处理。最后,利用统计参数检验来比较平滑处理后的图像,从而得出研究对象中脑灰质、白质有较大变化的区域[2]。VBM技术已经被广泛用于神经疾病的病理学研究,如特发性全面性癫痫[3]、阿尔茨海默病[4]、精神分裂症[5]及帕金森病等[6],并且成效十分可观。随着VBM技术的不断成熟,它现在也广泛应用于监测眼科疾病的病程及评估预后。本综述将简要概括VBM在青光眼、视神经炎、弱视、斜视、视网膜脱离、急性眼痛及失明等眼科疾病中应用的最新信息和进展。

1 VBM 分析的操作步骤

得到 MRI 图像数据后,使用 MRIcro 软 件(www.MRIcro.com)剔除不完整的功能数据,然后使用MATL AB 7.9.0(R2009b;The MathWorks,Natick,MA)上运行的,Statistical Parametr ic Mapping(SPM8;http://www.fil.ion. ucl.ac.uk)中的“基于体素的形态测量工具箱”(voxel-based morphometry toolbox,VBM8;http://dbm.neuro.uni-jena.de/vbm8/)来处理MRI结构图像。在VBM8中,使用默认选项将大脑分割为白质、灰质和脑脊髓液。通过在VBM8中的DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra)方法,我们将空间归一化为MNI(Montreal Neurological Institute)标准空间。DARTEL会生成白质和灰质模板,然后将生成的模板应用于之前处理得到的标准化白质和灰质。然后通过设置全宽半高(Full Width Half Maximum)的高斯核进行空间平滑处理,提高图像信噪比。最后,将修饰过、归一化和平滑处理后的图像递交给组级分析。

2 VBM 在不同眼科疾病中的应用

2.1 VBM 在青光眼中的应用

青光眼是造成永久性失明的最主要原因之一,其特征是视神经乳头凹陷和视野受损,是全世界不可逆失明的最常见原因[7]。事实上,青光眼是一种复杂的神经疾病,它严重影响了整个视觉相关神经通路[8]和非视觉相关通路[9]。尽管青光眼的致病因素和疾病发展机制现在仍然不清楚,但最新研究[10]表明青光眼的发生机制包含着深层次的神经病理学变化。此外,青光眼症状的严重程度也与大脑皮层结构的变化程度紧密相关[11]。因此,着手于研究对象的大脑变化可能会提供治疗青光眼的新思路。原发性闭角型青光眼(primary close-angle glaucoma,PCAG)的治疗相对简单,而原发性开角型青光眼(primary open-angle glaucoma,POAG)的机制更加复杂,治疗也更加困难[12]。正常眼压性青光眼(normal tension glaucoma,NTG)是一种没有眼压过高症状的POAG。Wang等[13]对比36名青光眼患者与20名健康对照个体,发现青光眼患者显示双侧颞上回、双侧顶上回、双侧枕外侧回、左侧梭状回、左侧眶额内侧回、右侧中央前回和右侧额上回的皮质厚度减少;右侧海马体、双侧壳核和双侧丘脑的灰质体积减少。梭状回与高级视觉功能有关,例如人脸识别、单词识别和颜色信息[14]。因此,左侧梭状回皮质厚度的减少可能反映了青光眼患者的面部识别和单词识别等高级功能受损。海马参和颜色等视觉功能的处理[18]。因此,丘脑灰质体积的减少可能反映了青光眼相关的视网膜神经节细胞视觉输入减少。Wang等[19]对比25名POAG患者和25名健康个体的VBM分析结果,发现POAG患者的外侧膝状体核、杏仁核,右侧V1区有明显的萎缩,但V2区域和海马体没有明显的变化。较大一部分青光眼患者会出现焦虑、易怒及难以控制情绪等症状[20]。VBM分析显示杏仁核萎缩,而杏仁核较大程度上参与了人的情绪调控[21],这或许就是导致患者情绪控制失调的原因。Giogio等[22]发现POAG患者的灰质萎缩程度较NTG患者更严重,且仅在晚期(III期)的POAG患者中发现枕叶皮质区和海马体的灰质萎缩。Zhang等[23]的结果显示晚期POAG患者在距状沟区域有较大程度的灰质萎缩,而POAG早期患者的VBM扫描与对照组无较大区别。这说明POAG患者灰质的萎缩程度较NTG患者更大,且视觉受损的程度与神经退行性病变的进程呈正相关。青光眼患者的皮质结构经历了复杂且深远的变化,此变化的程度与疾病的严重程度紧密相关[22,24],而VBM提供了一个方便且可靠的方式来揭示其潜在的神经机制。

2.2 VBM 在视神经炎中的应用

视神经炎(Optic neuritis)是一种炎性神经疾病,常见于多发性硬化症和视神经脊髓炎(neuromyelitis optica,NMO)患者中[25]。自身免疫反应、炎症反应及感染是视神经炎常见的诱发因素。其典型的临床表现包括眼动时疼痛、视野受损、瞳孔传入障碍、单眼或双眼失明及视神经乳头水肿等[26]。因为视神经炎与视神经脊髓炎的关系密切,研究人员常常招募视神经脊髓炎患者来研究视神经炎。在Chanson等[27]的研究中,与健康对照组相比,NMO患者的胼胝体和视辐射的白质体积出现大幅度减少,丘脑和额前皮质区域的灰质体积有相对较小幅度的减少。该研究第一次将大脑的参与引入视神经炎病理发展过程中,并且为后续探索其机制的研究提供了思路。此外,Blanc等[28]的研究将实验对象分为健康对照组、有认知障碍的NMO患者组及无认知障碍的NMO患者组。扫描后VBM结果显示与对照组相比,NMO患者的灰质、白质均有萎缩,灰质的萎缩程度在两个NMO组中没有区别,但是有认知障碍的NMO患者的白质萎缩程度更大,尤其是在负责认知能力的大脑区域中(视交叉、桥脑、小脑、额回)。法国改编的简短可重复综合认知测试(BCcogSEP)是一种包含8项认知能力测试的综合认知能力评估方式,发现了BCcogSEP测试结果与白质体积减小的高度数学相关性,这说明在严重视神经炎的患者中,白质减少与患者认知障碍的症状紧密相关。Huang等[1]发现视神经炎患者的左侧额中回、左侧额下回、左侧前扣带、左侧和右侧额中回、右侧顶叶小叶存在大幅度的灰质萎缩,白质体积在左额中回、右额上回、左中央前回、右下叶和右顶叶存在较大程度的缩小。该研究也测量了视觉诱发电位并且将其结果与VBM结果进行相关性分析,发现在上述区域中灰质、白质的异常变化与视觉诱发电位的变化呈强相关性,并且这种变化在视神经炎的病理发生机制中扮演了重要的角色。视神经尺寸极小且周围结构复杂,传统的眼科检查很难直接用于视神经炎的诊断。随着MRI在视神经炎研究和确定病灶区域上的使用越来越普遍,用VBM技术来分析磁共振图像可以准确、定量地评估视神经炎的病理状态。

2.3 VBM 在弱视中的应用

弱视是由于生命早期数年因为视觉体验不足而导致的视力下降。通常情况下,弱视在临床上被定义为伴随一种或多种已知弱化因素的视力下降,例如斜视、屈光参差、高屈光不正和白内障。在成熟的关键时期,弱化因子会干扰视觉通路的正常发育,结果是视觉皮层的结构和功能受损及形式视觉受损[29]。且屈光方法对弱视患者无矫正作用[30]。先前的电生理研究[31]表明弱视的病灶不在视网膜,越来越多的科学家利用VBM来探索弱视潜在的神经基础,并取得了不错的进展。Tootel l等[32]最先使用VBM扫描了27名健康对照者(17儿童,1 0成人)、2 3名斜视性弱视患者(10儿童,1 3成人)和2 4名屈光参差性弱视患者(15儿童,9成 人),并且进行视觉心理物理测试(psychophysical vision test)。结果显示弱视组的成人和小孩视觉皮质区灰质体积均显著减小,尤其在包含着初级视皮质的距状沟。此外,在腹颞皮质和顶枕区也有一定的灰质体积减小,并且灰质体积减小的区域大致与负责深度感知(腹 颞叶皮层)、运动感知及空间视觉(枕外侧皮质)的区域相对应。这揭示弱视的临床表现和其内在的神经基础之间的联系,同时也为“弱视的视觉异常表现与大脑神经元结构功能相关”的理论提供与反应抑制、记忆和空间认知[15]。海马体还与视觉区域如V5/MT和梭状回相关[16]。此外,海马体是神经退行性疾病中最早出现萎缩的大脑区域之一。以往研究[17]发现:青光眼脑中血清淀粉样蛋白诱导的眼压升高,并且淀粉样蛋白β的传播也发生在阿尔茨海默病患者的整个大脑中。综合青光眼患者淀粉样蛋白β升高和海马体的萎缩的情况来看,青光眼患者有更高的患如阿尔茨海默病等神经退行性病变的风险。丘脑外侧膝状核是连接视神经和视觉皮层的视觉中继中心,并且参与方向了证据。L u等[33]对 照1 8名儿童屈光参差性弱视(pediatric anisometropic amblyopia,PAA)患者,基于体素的形态测量用于评估PAA患者和健康儿童之间的结构改变,发现与健康儿童相比,PAA患者的小脑右小叶4和5以及大脑中右梭状回的灰质体积有明显增加。右梭状回与更高的视觉功能有关,例如人脸识别[34]。在PAA患者中,视觉缺陷和对比敏感度降低会在面部处理中增加视觉噪声,这可能导致右梭状回中噪声诱导的神经元活动,最终导致右梭状回中的灰质体积增加。Xiao等[35]使用3D T1加权的磁共振扫描了14名弱视儿童(5斜视性弱视,8屈光参差性弱视)和1 4名健康对照,并且将MR图像进行VBM扫描。结果显示弱视儿童的额中回、梭状回、左半球颞下回和双侧距状沟皮质均出现明显的灰质萎缩。额中回与额叶视区的位置相关,而额叶视区负责瞄准环境中的物体,估计相对距离和位置并预测运动轨迹。这表明弱视儿童中额中回灰质体积的降低与弱视临床表现的立体视觉缺失、失焦等之间存在关联性。该研究说明弱视儿童的视觉相关灰质结构中存在发育缺陷,同时也为“初级视皮质是视觉剥夺的主要病理改变部位”的理论提供了依据。Barnes等[36]用VBM比较了弱视患者和健康对照的灰质结构,发现斜视性弱视患者的外侧膝状核区域有明显的体积减小。以往研究[37]表明外侧膝状核损伤会导致不同程度的视力丧失,结合此次实验的结果,Barnes认为外侧膝状核的病理变化是弱视发展的根本原因。Li等[38]发现单眼弱视患者的左枕下回、双侧海马旁回和左上臀回均出现灰质体积减小。这些与立体视觉相关的大脑结构(例如背侧视觉通路中包含的区域)的体积改变可能解释了弱视典型的临床表现——立体视觉缺失的发生机制。上述研究均表明弱视患者的皮质损伤的形态学基础,因此,利用VBM技术来分析患者灰质、白质的变化可能有助于从形态学方面揭示弱视发病机制中的神经机制,并为疾病的预后和治疗监测提供补充信息。

2.4 VBM 在斜视中的应用

斜视指眼睛的视轴偏离平行的异常眼位,进而影响双眼视觉和立体深度的感知。科学家一直在探索斜视潜在的神经机制:当施加视觉刺激时,斜视猴子的大脑中被激活的神经元数量较对照组有所减少[39]。人类实验对象的功能磁共振成像(f MRI)研究结果表明V1皮质区和外纹区域的活跃度减小[40],这与动物实验的结果是吻合的。以上结果均显示视觉皮层参与了斜视的发展过程。Chan等[41]发现斜视患者的与枕叶视野和顶眼视野相关的大脑区域存在较大程度的灰质萎缩,但与额叶视野和补充眼场相关的部分(如丘脑和基底神经节)的灰质体积增加。G M的这种相反变化与神经可塑性理论一致,这意味着视觉处理区域中的皮质缺陷被动眼神经区域中发生的变化所补偿,所以VBM结果证明脑缺陷和发生斜视的联系。Ouyang等[42]利用VBM进一步分析了20名共同性斜视患者的T 1加权M R图像,发现左中颞极、左小脑后叶、右后扣带回皮层、左楔骨和右前运动皮层的灰质有大程度萎缩,与此同时,左颞中回、右颞中回、右前突和右前运动皮层区域的白质也有相对较小程度的萎缩,并且共同性斜视的发病持续时间与颞中极的灰质体积减少量呈正相关。颞中回负责视网膜图像的速度和立体感的检测,而共同性斜视患者总是在立体视觉和深度感测方面存在缺陷[43]。所以视觉通路的灰质减少也许是共同性斜视患者立体视觉丧失的潜在原因。Ouyang等[42]的实验结果与Yan等[44]的结果相符合。Yan等[44]利用VBM和扩散张量成像(diffusion tensor imaging,DTI)发现在枕骨和顶叶区域的灰质体积变化异常,尤其是在背侧视觉通路的重要组成部分,如顶叶下叶和枕中回,所以Yan等[44]得出的背侧视觉通路受损的结果与先前提到的Chan等[41]的研究一致,即斜视患者的枕骨和顶叶区域的GMV降低。同时,该实验结果说明,斜视会导致皮质结构和皮质功能的缺陷,从而进一步影响患者的立体视觉。综上所述,VBM可能有助于揭示共同性斜视患者的眼动缺陷症状与视觉通路的神经解剖学变化之间的关系。

2.5 VBM 在视网膜脱离中的应用

视网膜脱离(retinal detachment,RD)是指视网膜色素上皮(retinal pigment epithelium,RPE)和视网膜神经感觉层(neurosensory retina,NE)分离,是造成失明的主要原因之一。造成RD的主要原因包括年龄、遗传、外伤、高度近视和白内障手术[45]。其临床表现有中心视力下降、视物变形症、玻璃体异物沉积和视野缺损[46],最后视网膜神经感觉层会退化而造成失明。Li等[47]对比2 0名视网膜脱离患者和20名健康人的VBM分析结果,发现RD患者的右下额回、右上颞、右前扣带回和右楔状叶有明显萎缩,同时小脑后叶、左海马体、左扣带回和左颞中回也有一定程度的体积缩小。白质在全脑范围内也有小幅度的缩小。前额叶皮层投射负责眼球运动的控制,小脑后叶与认知能力有关,这表明RD损害了额下回和前额皮层,导致患者的眼球运动能力和认知能力受损。海马GM量减少被认为是神经元疾病的先兆,并且先前的研究证实了海马体体积和立体记忆能力的正相关关系[48]。因此,Li等[47]推断RD患者的海马灰质体积降低与他们的焦虑症状和视力缺陷有关,如果不及时治疗RD,则会出现一系列神经系统疾病。颞上回与听觉信息处理和视觉搜索能力有关[49],左颞中回是听和说的中枢[50],因此在这项研究中,RD患者的颞上回和左中颞上回的灰质体积均减小,这可能表明RD可能会导致听觉和视觉信息处理方面的缺陷。VBM在体素层面证明了RD患者的灰质体积有异常变化,结合其典型临床特征,将有助于弄清RD的潜在机制。

2.6 VBM 在眼痛中的应用

眼痛(eye pain,EP)是许多眼病的常见症状。E P可以由包括干眼、传染性角膜炎、巩膜炎、青光眼及虹膜睫状体炎在内的多种眼部疾病引起[51]。角膜由三叉神经的眼支支配,是人体神经支配最密集的结构之一。由于角膜神经纤维丰富,对外界刺激非常敏感。角膜炎或角膜溃疡会导致严重的E P,并伴有畏光、流泪和头痛等症状[52]。据华中地区调查,感染性角膜炎患病率为0.148%[53]。目前抗生素是角膜炎或角膜溃疡的主要治疗方法,但还没有有效措施来缓解角膜炎相关的EP。角膜神经损伤同样会触发周围和中枢三叉神经感觉网络,继而引起角膜疼痛,并且这个过程与丛集性头痛有关[54]。同时,EP也是干眼的一种症状。以往研究[55]表明:由于慢性EP,干眼患者常伴随着焦虑、抑郁等心理障碍。现已经证实由角膜病理原因引起的急性EP会激活三叉神经-臂旁通路,并且角膜性EP可能与神经支配体感皮层、脊柱三叉神经核、小岛皮层和前扣带回皮层有关[56]。Lan等[57]招募了2 4例急性E P患者(男17例,女7例)和24例健康对照(17例男性和7例女),并通过VBM方法分析了原始的T 1加 权MR 3D图像,发现与健康对照组相比,EP患者在左小脑后叶、左边缘叶、右岛、左丘脑、左尾状和右楔状脑区域均有明显的灰质萎缩。此外,白质体积在全脑范围内轻微下降。小脑后叶负责机体的认知能力和工作记忆[58],因此Lan等[57]推测小脑后叶萎缩的严重EP患者会发展出认知障碍的症状。脑岛除了与视觉感受和记忆有关,近期有研究[59]说明其也与情绪调控、成瘾习惯及痛觉调控有关。众 多E P患者都有失眠、抑郁的症状[60], 而E P患者的双侧脑岛不同程度的萎缩,或许可以解释其发病根本原因。尽管EP的大多数病因可以通过传统的检查方法进行判断,但是其病因学原理并未全部揭示。利用VBM,科学家可以在神经解剖水平上获得更多信息,这有助于揭示EP的潜在病理机制,并有助于EP的鉴别诊断,同时还可以根据VBM结果中显示的异常体积变化推测疾病进展的方向。

2.7 VBM 在单目失明和先天性失明中的应用

失明(blindness)可由多种疾病引起,如白内障、青光眼和视神经炎,并可分为早期失明和晚期失明,或单目失明(monocular blindness)和双目失明[61]。在视觉相关区域和非视觉相关区域中,失明均与大脑的解剖和功能变化密切相关[62]。从解剖学上讲,先天性失明(congenital blindness,CB)与非视觉相关的枕骨皮质的皮质厚度增加及灰质体积减少相关[63],同时还会影响与视觉相关的丘脑亚区域[62]。Ptito等[64]通过VBM比较了7名CB患者和21个健康对照的大脑解剖学差异,发现CB患者的膝状体-纹状体系统(包含视神经、视交叉、视辐射和初级视皮层)出现明显萎缩。此外,在下侧纵束和胼胝体后部的白质体积明显降低。该研究还显示CB患者投射到视觉皮层的传入投射有明显萎缩。该研究表明:视觉相关的解剖结构发生了显著变化,并且表明将感知传递到视觉皮层的神经通路已经被重组。在Shi等[61]的研究中,使用VBM分析31位单目失明患者(25位男性,6位女性)和31位健康对照的MR图像,并对GMV的变化和单目失明的持续时间进行相关性分析,发现双侧岛状叶、右前扣带回、左枕回和右枕下脑的大脑区域灰质体积显著降低。此外,单目失明的持续时间(单目失明病程)与灰质体积的减少程度呈正相关。脑岛皮层负责情绪处理,其功能障碍会导致精神疾病,如精神分裂症[65]。由于单目失明患者的脑岛灰质体积降低,Shi等[61]推测单目失明也可能引起精神疾病。因此,VBM分析为揭示失明发病机理中的视觉通路变化提供了依据,并可用来推测它们可能的病理进展。

2.8 VBM 在视网膜色素变性中的应用

视网膜色素变性(retinitis pigmentosa,RP)是人类视觉障碍的重要原因,有早期周边视野缺损的特征。RP被归类为遗传性视网膜营养不良症,其特征是光感受器变性和随后的视力丧失[66]。典型 的R P表现为视网膜变性影响视杆细胞,并且向黄斑和中央凹发展,视椎细胞仅在后期受到影响。患者最初表现为夜盲症,然后是进行性外周视野缺损,最终失明[67]。Machado等[68]应用VBM来研究27名视力部分正常的RP患者和38名年龄和性别匹配的正常视力对照组的全脑灰质体积变化,发现患者枕叶皮质的灰质体积显著减少。患者初级视觉皮层的灰质体积减少体积与同组患者外周视野缺损的程度显著相关,并且灰质损失的空间形式与废用导致的神经元萎缩情况一致。这说明神经元萎缩或许在疾病早期就存在,目前的研究性治疗方式,例如基因替代疗法、视网膜或干细胞移植、药理学神经营养因子和神经假体装置,应尽可能在疾病早期实施,以避免发展为视觉皮质萎缩[69]。VBM结果给RP的治疗提供了改进的建议。此外,MRI和VBM已被提议作为一种工具来评估干预可能在多大程度上有效,因为患有严重皮质结构萎缩的患者可能无法从视网膜输入恢复中受益[70]

2.9 VBM 在高度近视中的应用

高度近视(high myopia,HM)是一种常见的眼病,其特征是远距离视力受损。眼形变化引起的屈光度改变是HM患者最重要的病理变化。HM不仅是屈光不正问题,它还与视网膜脱离[71]、黄斑裂孔[72]和POAG[73]等严重眼部并发症有关。此外,H M可导致巩膜变形,这与眼底病变密切相关。Huang等[74]用VBM方法对比82名HM患者58名健康对照,发现与HCs相比,H M患者右侧楔骨/舌回和右侧丘脑的GMV值显著降低。相比之下,H M组在脑干、右侧海马旁回/丘脑、左侧海马旁回/丘脑以及左右壳核中显示出更高的GMV值。两组之间未发现白质体积值有显著差异。因此,Huang等[74]推测HM可能伴有视觉皮层的损伤和丘脑功能的障碍,并且HM导致的双侧壳核的结构变化或许反映了HM中运动功能的代偿。

3 结语

VBM能在活体无创的条件下全自动地在体素层面测量大脑灰质、白质密度和体积的变化。VBM不同于其他的常规MRI方法,VBM能对全脑灰质、白质密度和体积进行定量化和标准化,探测全脑的异常变化,并且无需对感兴趣区进行先验性假设,完全没有偏向性,不会被研究人员的主观思维影响,显示眼科疾病后全脑细微形态学具有优势。VBM结果的可靠性依赖于影像质量、预处理方式、统计学分析等,因此也有很多原因限制了它的临床应用。首先是尽管VBM能反映白质变化量,但不能揭示内在病理生理改变,因此它仍仅用于为研究内在病理变化机制提供思路。其次,尽管VBM对灰质、白质的相对变化十分敏感,但其结果只能提供群体水平的脑组织体积变化信息,在归一化过程中,所有实验对象的图像都放入模板中,这意味着去除了大部分实验对象的宏观个体差异。因此,它反映的不是宏观或微观的结构,而是介观的结构,它不能反映如神经元的数量和大小,或神经连接密度此类的细节信息。最后是误差,由于VBM有较高的信噪比,影像质量可以很大程度地影响其结果的准确性。此外,灰质、白质分割时部分容积效应、空间标准化过程脑室的影响、标准模板不完全匹配以及不同大小平滑核均会导致误差,但是对分割好的灰质、白质进行空间标准化后图像应用高空间分辨率(1 mm或1.5 mm),利用自制模板(匹配好年龄、性别等),不同的对象选取不同的平滑核等可改善和弥补这些局限。随着越来越多的眼科疾病被证实存在大脑神经解剖结构的异常,VBM已成为阐明眼科疾病的病理机制,帮助预测和监测其进展并为其临床诊断和治疗提供帮助的高效工具。但是VBM仍存在很多使用的局限性,如在儿童身上的误差较大,无法体现个体差异等。VBM在研究脑功能和神经系统疾病方面具有巨大的潜力。最新的研究[75]基于健康对照组的VBM测量上施加小波变换以获取基于体素的层次特征,进而计算体素的连通性,是研究提速形态学连接成为可能。结合VBM和多模态功能成像技术,可以分析形态学改变前后脑组织微结构以及脑功能的变化[76]。未来将形态学与功能成像技术相结合来研究眼科疾病的神经变化有望得到更可靠的研究结果。除了上述的眼科疾病,许多其他眼科疾病也被证实有大脑病理变化,如黄斑变性[77]、开放性眼外伤[78]等,这些疾病或许都可以使用VBM技术来进一步探究其发病原理,以及检测其治疗及远期预后情况。随着VBM技术的优化和数据处理技术的提升,VBM将在眼病的病理机制研究中得到更广泛的应用。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Huang X, Zhang Q, Hu PH, et al. White and gray matter volume changes and correlation with visual evoked potential in patients with optic neuritis: a voxel-based morphometry study[ J]. Med Sci Monit, 2016, 22: 1115-1123.
2、沈善昌, 姜兴岳. 基于体素的形态学测量在认知障碍相关疾病 中的研究进展[ J]. 磁共振成像, 2019, 10(11): 851-854.
SHEN SC, JIANG XY. Research progress of voxel-based morphological measurements in cognitive impairment-related diseases[ J]. Chinese Journal of Magnetic Resonance Imaging, 2019, 10(11): 851-854.
3、Kim JH, Kim JB, Seo WK, et al. Volumetric and shape analysis of thalamus in idiopathic generalized epilepsy[ J]. J Neurol, 2013, 260(7): 1846-1854.
4、Ferreira LK, Diniz BS, Forlenza OV, et al. Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies[ J]. Neurobiol Aging, 2011, 32(10): 1733-1741.
5、Nenadic I, Dietzek M, Sch?nfeld N, et al. Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study[ J]. Schizophr Res, 2015, 161(2-3): 169-176.
6、Zeng Q, Guan X, Law Yan Lun JCF, et al. Longitudinal alterations of local spontaneous brain activity in Parkinson's disease[ J]. Neurosci Bull, 2017, 33(5): 501-509.
7、Jonas JB, Aung T, Bourne RR, et al. Glaucoma[ J]. Lancet, 2017, 390(10108): 2183-2193.
8、Xu ZF, Sun JS, Zhang XH, et al. Microstructural visual pathway abnormalities in patients with primary glaucoma: 3 T diffusion kurtosis imaging study[ J]. Clin Radiol, 2018, 73(6): 591.e9-591.e15.
9、Frezzotti P, Giorgio A, Motolese I, et al. Structural and functional brain changes beyond visual system in patients with advanced glaucoma[ J]. PLoS One, 2014, 9(8): e105931.
10、Weinreb RN, Aung T, Medeiros FA, et al. The pathophysiology and treatment of glaucoma: a review[ J]. JAMA, 2014, 311(18): 1901-1911.
11、叶蕾, 康红花, 邵毅. 低频振幅成像技术在眼科疾病的应用进 展[ J]. 磁共振成像, 2019, 10(5): 397-400.
YE L, KANG HH, SHAO Y. Application of amplitude of low-frequency fluctuation in ocular disease[ J]. Chinese Journal of Magnetic Resonance Imaging, 2019, 10(5): 397-400.
12、唐静, 邓应平, 王琼, 等. 原发性开角型青光眼发病机制的研究进 展[ J]. 眼科新进展, 2020, 40(6): 587-592.
TANG J, DENG YP, WANG Q, et al. Research progress in the pathogenesis of primary open-angle glaucoma[ J]. Recent Advances in Ophthalmology, 2020, 40(6): 587-592.
13、Wang Y, Wang X, Zhou J, et al. Brain morphological alterations of cerebral cortex and subcortical nuclei in high-tension glaucoma brain and its associations with intraocular pressure[ J]. Neuroradiology, 2020, 62(4): 495-502.
14、Dai H, Morelli JN, Ai F, et al. Resting-state functional MRI: functional connectivity analysis of the visual cortex in primary open-angle glaucoma patients[ J]. Hum Brain Mapp, 2013, 34(10): 2455-2463.
15、Burgess N, Maguire EA, O'Keefe J, et al. The human hippocampus and spatial and episodic memory[ J]. Neuron, 2002, 35(4): 625-641.
16、Murphy MC, Conner IP, Teng CY, et al. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma[ J]. Sci Rep, 2016, 6: 31464.
17、Giorgio A, Zhang J, Costantino F, et al. Diffuse brain damage in normal tension glaucoma[ J]. Hum Brain Mapp, 2018, 39(1): 532-541.
18、Gupta N, Ang LC, No?l de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex[ J]. Br J Ophthalmol, 2006, 90(6): 674-678.
19、Wang J, Li T, Sabel BA, et al. Structural brain alterations in primary open angle glaucoma: a 3T MRI study[ J]. Sci Rep, 2016, 6: 18969.
20、Zhang X, Olson DJ, Le P, et al. The association between glaucoma,anxiety, and depression in a large population[ J]. Am J Ophthalmol, 2017, 183: 37-41.
21、Yang Y, Wang JZ, et al. From structure to behavior in basolateral amygdalahippocampus circuits[J]. Front Neural Circuits, 2017, 11: 86.
22、Giorgio A, Zhang J, Costantino F, et al. Diffuse brain damage in normal tension glaucoma[ J]. Hum Brain Mapp, 2018, 39(1): 532-541.
23、Zhang S, Wang B, Xie Y, et al. Retinotopic Changes in the Gray Matter Volume and Cerebral Blood Flow in the Primary Visual Cortex of Patients With Primary Open-Angle Glaucoma[ J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6171-6178.
24、Dai H, Yin D, Hu C, et al. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage[ J]. Neuroradiology, 2013, 55(2): 233-243.
25、Parfenov V, Schluep M, Du Pasquier R, et al. Assessing risks of multiple sclerosis therapies[ J]. J Neurol Sci, 2013, 332(1-2): 59-65.
26、Abel A, McClelland C, Lee MS, et al. Critical review: Typical and atypical optic neuritis[ J]. Surv Ophthalmol, 2019, 64(6): 770-779.
27、Chanson JB, Lamy J, Rousseau F, et al. W hite matter volume is decreased in the brain of patients with neuromyelitis optica[ J]. Eur J Neurol, 2013, 20(2): 361-367.
28、Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[ J]. PLoS One, 2012, 7(4): e33878.
29、Birch EE. Amblyopia and binocular vision[ J]. Prog Retin Eye Res, 2013, 33: 67-84.
30、DeSantis D. Amblyopia[ J]. Pediatr Clin North Am, 2014, 61(3): 505-518.
31、Schiavi C, Tassi F, Finzi A, et al. Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia[ J]. Clin Ophthalmol, 2016, 10: 2061-2068.
32、Tootell RB, Mendola JD, Hadjikhani NK, et al. Functional analysis of V3A and related areas in human visual cortex[ J]. J Neurosci, 1997, 17(18): 7060-7078.
33、Lu W, Yu X, Zhao L, et al. Enhanced gray matter volume compensates for decreased brain activity in the ocular motor area in children with anisometropic amblyopia[ J]. Neural Plast, 2020, 2020: 8060869.
34、Liang M, Xie B, Yang H, et al. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study[ J]. Neuroradiology, 2017, 59(5): 517-524.
35、Xiao Q, Barborica A, Ferrera VP, et al. Radial motion bias in macaque frontal eye field[ J]. Vis Neurosci, 2006, 23(1): 49-60.
36、Barnes GR , Li X , Thompson B, et al. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes[ J]. Invest Ophthalmol Vis Sci, 2010, 51(3): 1432-1438.
37、Linden ML, Heynen AJ, Haslinger RH, et al. Thalamic activity that drives visual cortical plasticity[ J]. Nat Neurosci, 2009, 12(4): 390-392.
38、Li Q, Jiang Q, Guo M, et al. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study[ J]. Br J Ophthalmol, 2013, 97(4): 524-529.
39、Baek J, Lee A, Chu M, et al. Analysis of choroidal vascularity in children with unilateral hyperopic amblyopia[ J]. Sci Rep, 2019, 9(1): 12143.
40、Min YL, Su T, Shu YQ, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of lowfrequency fluctuation: a resting-state f MRI study[ J]. Neuropsychiatr Dis Treat, 2018, 14: 2351-2359.
41、Chan ST, Tang KW, Lam KC, et al. Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans[ J]. Neuroimage, 2004, 22(2): 986-994.
42、Ouyang J, Yang L, Huang X, et al. The atrophy of white and gray matter volume in patients with comitant strabismus: Evidence from a voxelbased morphometry study[ J]. Mol Med Rep, 2017, 16(3): 3276-3282.
43、Sharma P. The pursuit of stereopsis[ J]. J AAPOS, 2018, 22(1): 2.e1-2.e5.
44、Yan X, Lin X, Wang Q, et al. Dorsal visual pathway changes in patients with comitant extropia[ J]. PLoS One, 2010, 5(6): e10931.
45、Tsai ASH, Wong CW, Lim L, et al. Pediatric retinal detachment in an Asian population with high prevalence of myopia: clinical characteristics, surgical outcomes, and prognostic factors[ J]. Retina, 2019, 39(9): 1751-1760.
46、Lumi X, Hawlina M, Glava? D, et al. Ageing of the vitreous: From acute onset floaters and flashes to retinal detachment[ J]. Ageing Res Rev, 2015, 21: 71-77.
47、Li B, Liu YX, Li HJ, et al. Reduced gray matter volume in patients with retinal detachment: evidence from a voxel-based morphometry study[ J]. Acta Radiol, 2020, 61(3): 395-403.
48、Pandey AK, Ardekani BA, Kamarajan C, et al. Lower prefrontal and hippocampal volume and diffusion tensor imaging differences reflect structural and functional abnormalities in abstinent individuals with alcohol use disorder[ J]. Alcohol Clin Exp Res, 2018, 42(10): 1883-1896.
49、Nourski KV, Steinschneider M, Rhone AE, et al. Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study[ J]. Neuroimage, 2018, 183: 412-424.
50、Alain C, Du Y, Bernstein LJ, et al. Listening under difficult conditions: An activation likelihood estimation meta-analysis[ J]. Hum Brain Mapp, 2018, 39(7): 2695-2709.
51、Szatmáry G. Neuroimaging in the diagnostic evaluation of eye pain[ J]. Curr Pain Headache Rep, 2016, 20(9): 52.
52、Rosenthal P, Borsook D, Moulton EA, et al. Oculofacial pain: corneal nerve damage leading to pain beyond the eye[ J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5285-5287.
53、Cao J, Yang Y, Yang W, et al. Prevalence of infectious keratitis in Central China[ J]. BMC Ophthalmol, 2014, 14: 43.
54、Rosenthal P, Borsook D, et al. Ocular neuropathic pain[ J]. Br J Ophthalmol, 2016, 100(1): 128-134.
55、Szakáts I, Sebestyén M, Németh J, et al. The role of health anxiety and depressive symptoms in dry eye disease[ J]. Curr Eye Res, 2016, 41(8): 1044-1049.
56、Xiang Y, Zhou W, Wang P, et al. Alkali burn induced corneal spontaneous pain and activated neuropathic pain matrix in the central nervous system in mice[ J]. Cornea, 2017, 36(11): 1408-1414.
57、Lan DY, Zhu PW, He Y, et al. Gray matter volume changes in patients with acute eye pain: a voxel-based morphometry study[ J]. Transl Vis Sci Technol, 2019, 8(1): 1.
58、Koziol LF, Budding D, Andreasen N, et al. Consensus paper: the cerebellum's role in movement and cognition[ J]. Cerebellum, 2014, 13(1): 151-177.
59、Zhang Y, Zhou W, Wang S, et al. The roles of subdivisions of human insula in emotion perception and auditory processing[ J]. Cereb Cortex, 2019, 29(2): 517-528.
60、Galor A, Seiden BE, Park JJ, et al. The association of dry eye symptom severity and comorbid insomnia in US veterans[ J]. Eye Contact Lens, 2018, 44 Suppl 1(Suppl 1): S118-S124.
61、Shi WQ, He Y, Li QH, et al. Central network changes in patients with advanced monocular blindness: A voxel-based morphometric study[ J]. Brain Behav, 2019, 9(10): e01421.
62、Cecchetti L, Ricciardi E, Handjaras G, et al. Congenital blindness affects diencephalic but not mesencephalic structures in the human brain[ J]. Brain Struct Funct, 2016, 221(3): 1465-1480.
63、付俊洪, 陈霞, 郭雅图, 等. 单眼形觉剥夺对小鼠视觉发育关键 期内初级视皮层v1b区tltp的影响[ J]. 眼科新进展, 2016, 36(6): 512-515.
FU JH, CHEN X, GUO YT, et al. Effects of monocular form deprivation on tLTP in V1B area of primary visual cortex in critical period of mice visual development[ J]. Recent Advances in Ophthalmology, 2016, 36(6): 512-515.
64、Ptito M, Schneider FC, Paulson OB, et al. Alterations of the visual pathways in congenital blindness[ J]. Exp Brain Res, 2008, 187(1): 41-49.
65、Wylie KP, Tregellas JR, et al. The role of the insula in schizophrenia[ J]. Schizophr Res, 2010, 123(2-3): 93-104.
66、Cottet S, Schorderet DF, et al. Mechanisms of apoptosis in retinitis pigmentosa[ J]. Curr Mol Med, 2009, 9(3): 375-383.
67、Herse P. Retinitis pigmentosa: visual function and multidisciplinary management[ J]. Clin Exp Optom, 2005, 88(5): 335-350.
68、Machado A, Pereira A, Ferreira F, et al. Structure-function correlations in Retinitis Pigmentosa patients with partially preserved vision: a voxelbased morphometry study[ J]. Sci Rep, 2017, 7(1): 11411.
69、Shintani K, Shechtman DL, Gurwood AS, et al. Review and update: current treatment trends for patients with retinitis pigmentosa[ J]. Optometry, 2009, 80(7): 384-401.
70、Fernández E, Pelayo F, Romero S, et al. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity[ J]. J Neural Eng, 2005, 2(4): R1-12.
71、Dragoumis I, Richards A, Alexander P, et al. Retinal detachment in severe myopia[ J]. Lancet, 2017, 390(10090): 124.
72、Feng L, Jin X, Li J, et al. Surgical management of retinal detachment resulting from macular hole in a setting of high myopia[ J]. Eye Sci, 2012, 27(2): 69-75.
73、Ma F, Dai J, Sun X, et al. Progress in understanding the association between high myopia and primary open-angle glaucoma[ J]. Clin Exp Ophthalmol, 2014, 42(2): 190-197.
74、Huang X, Hu Y, Zhou F, et al. Altered whole-brain gray matter volume in high myopia patients: a voxel-based morphometry study[ J]. Neuroreport, 2018, 29(9): 760-767.
75、Wang XH, Jiao Y, Li L, et al. Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology[ J]. PLoS One, 2018, 13(7): e0201243.
76、张晓倩, 孟祥水. 多模态功能MRI对血管性认知障碍的研究进 展[ J]. 国际医学放射学杂志, 2019, 42(1): 59-61.
ZHANG XQ, MENG XS. Research progress of multimodality functional magnetic resonance imaging on vascular cognitive impairment[ J]. International Journal of Medical Radiology, 2019, 42(1): 59-61.
77、Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[ J]. Lancet, 2018, 392(10153): 1147-1159.
78、Huang X, Li HJ, Ye L, et al. Altered regional homogeneity in patients with unilateral acute open-globe injury: a resting-state functional MRI study[ J]. Neuropsychiatr Dis Treat, 2016, 12: 1901-1906.
1、张珍绮,孙钰茗,宋文玉等.动眼神经麻痹病因学与MRI成像及诊断的应用进展[J].影像研究与医学应用,2022,6(21):10-12+16.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
推荐阅读
出版者信息
中山眼科



中山大学