1、Chen N, Frishman WH. High-density lipoprotein infusion therapy and 
atherosclerosis: current research and future directions[ J]. Cardiol Rev, 
2016, 24(6): 298-302.Chen N, Frishman WH. High-density lipoprotein infusion therapy and 
atherosclerosis: current research and future directions[ J]. Cardiol Rev, 
2016, 24(6): 298-302.
							  
                                  
                                      
								  2、Kontush A, Lindahl M, Lhomme M, et al. Structure of HDL: particle 
subclasses and molecular components[ J]. Handb Exp Pharmacol, 
2015, 224: 3-51.Kontush A, Lindahl M, Lhomme M, et al. Structure of HDL: particle 
subclasses and molecular components[ J]. Handb Exp Pharmacol, 
2015, 224: 3-51.
							  
                                  
                                      
								  3、Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (ApoA-I), immunity, 
inflammation and cancer[ J]. Cancers (Basel), 2019, 11(8): 1097.Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (ApoA-I), immunity, 
inflammation and cancer[ J]. Cancers (Basel), 2019, 11(8): 1097.
							  
                                  
                                      
								  4、Reddy ST, Navab M, Anantharamaiah GM, et al. Apolipoprotein A-I 
mimetics[ J]. Curr Opin Lipidol, 2014, 25(4): 304-308.Reddy ST, Navab M, Anantharamaiah GM, et al. Apolipoprotein A-I 
mimetics[ J]. Curr Opin Lipidol, 2014, 25(4): 304-308.
							  
                                  
                                      
								  5、Estrada-Luna D, Ortiz-Rodriguez M A, Medina-Briseno L, et al. 
Current therapies focused on high-density lipoproteins associated with 
cardiovascular disease[ J]. Molecules, 2018, 23(11): 2730.Estrada-Luna D, Ortiz-Rodriguez M A, Medina-Briseno L, et al. 
Current therapies focused on high-density lipoproteins associated with 
cardiovascular disease[ J]. Molecules, 2018, 23(11): 2730.
							  
                                  
                                      
								  6、Zhou L, Li C, Gao L, et al. High-density lipoprotein synthesis and 
metabolism (review)[ J]. Mol Med Rep, 2015, 12(3): 4015-4021.Zhou L, Li C, Gao L, et al. High-density lipoprotein synthesis and 
metabolism (review)[ J]. Mol Med Rep, 2015, 12(3): 4015-4021.
							  
                                  
                                      
								  7、Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in 
mechanisms of endothelial protection by HDL[ J]. Curr Opin Lipidol, 
2012, 23(3): 182-189.Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in 
mechanisms of endothelial protection by HDL[ J]. Curr Opin Lipidol, 
2012, 23(3): 182-189.
							  
                                  
                                      
								  8、van der Vorst EPC. High-density lipoproteins and apolipoprotein 
A1[ J]. Subcell Biochem, 2020, 94: 399-420.van der Vorst EPC. High-density lipoproteins and apolipoprotein 
A1[ J]. Subcell Biochem, 2020, 94: 399-420.
							  
                                  
                                      
								  9、Cameron SJ, Morrell CN, Bao C, et al. A novel anti-inflammatory effect 
for high density lipoprotein[ J]. PLoS One, 2015, 10(12): e0144372. 
Cameron SJ, Morrell CN, Bao C, et al. A novel anti-inflammatory effect 
for high density lipoprotein[ J]. PLoS One, 2015, 10(12): e0144372. 
							  
                                  
                                      
								  10、Haghikia A, Landmesser U. High-density lipoproteins: effects on 
vascular function and role in the immune response[ J]. Cardiol Clin, 
2018, 36(2): 317-327.Haghikia A, Landmesser U. High-density lipoproteins: effects on 
vascular function and role in the immune response[ J]. Cardiol Clin, 
2018, 36(2): 317-327.
							  
                                  
                                      
								  11、Namiri-Kalantari R, Gao F, Chattopadhyay A, et al. The dual nature of 
HDL: anti-inflammatory and pro-inflammatory[ J]. Biofactors, 2015, 
41(3): 153-159.Namiri-Kalantari R, Gao F, Chattopadhyay A, et al. The dual nature of 
HDL: anti-inflammatory and pro-inflammatory[ J]. Biofactors, 2015, 
41(3): 153-159.
							  
                                  
                                      
								  12、Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics[ J]. 
Handb Exp Pharmacol, 2015, 224: 631-648.Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics[ J]. 
Handb Exp Pharmacol, 2015, 224: 631-648.
							  
                                  
                                      
								  13、Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J]. 
Acta Diabetol, 2018, 55(7): 681-689.Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J]. 
Acta Diabetol, 2018, 55(7): 681-689.
							  
                                  
                                      
								  14、Sharifov O F, Xu X, Gaggar A, et al. Anti-inflammatory mechanisms 
of apolipoprotein A-I mimetic peptide in acute respiratory distress 
syndrome secondary to sepsis[ J]. PLoS One, 2013, 8(5): e64486.Sharifov O F, Xu X, Gaggar A, et al. Anti-inflammatory mechanisms 
of apolipoprotein A-I mimetic peptide in acute respiratory distress 
syndrome secondary to sepsis[ J]. PLoS One, 2013, 8(5): e64486.
							  
                                  
                                      
								  15、Mansukhani NA, Peters EB, So MM, et al. Peptide amphiphile 
supramolecular nanostructures as a targeted therapy for 
atherosclerosis[ J]. Macromol Biosci, 2019, 19(6): e1900066.Mansukhani NA, Peters EB, So MM, et al. Peptide amphiphile 
supramolecular nanostructures as a targeted therapy for 
atherosclerosis[ J]. Macromol Biosci, 2019, 19(6): e1900066.
							  
                                  
                                      
								  16、Smith JD. Apolipoprotein A-I and its mimetics for the treatment of 
atherosclerosis[ J]. Curr Opin Investig Drugs, 2010, 11(9): 989-996.Smith JD. Apolipoprotein A-I and its mimetics for the treatment of 
atherosclerosis[ J]. Curr Opin Investig Drugs, 2010, 11(9): 989-996.
							  
                                  
                                      
								  17、Liu D, Wu M, Du Q, et al. The apolipoprotein A-I mimetic peptide, 
D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation[ J]. J Cell Mol Med, 2017, 21(12): 3810-3820.Liu D, Wu M, Du Q, et al. The apolipoprotein A-I mimetic peptide, 
D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation[ J]. J Cell Mol Med, 2017, 21(12): 3810-3820.
							  
                                  
                                      
								  18、Navab M, Reddy ST, Anantharamaiah GM, et al. Intestine may be 
a major site of action for the apoA-I mimetic peptide 4F whether 
administered subcutaneously or orally[ J]. J Lipid Res, 2011, 52(6): 
1200-1210.Navab M, Reddy ST, Anantharamaiah GM, et al. Intestine may be 
a major site of action for the apoA-I mimetic peptide 4F whether 
administered subcutaneously or orally[ J]. J Lipid Res, 2011, 52(6): 
1200-1210.
							  
                                  
                                      
								  19、Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I 
mimetic D-4F lowers HDL-inflammatory index in high-risk patients: 
a first-in-human multiple-dose, randomized controlled trial[ J]. Clin 
Transl Sci, 2017, 10(6): 455-469.Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I 
mimetic D-4F lowers HDL-inflammatory index in high-risk patients: 
a first-in-human multiple-dose, randomized controlled trial[ J]. Clin 
Transl Sci, 2017, 10(6): 455-469.
							  
                                  
                                      
								  20、Qin S, Kamanna VS, Lai JH, et al. Reverse D4F, an apolipoproteinAI mimetic peptide, inhibits atherosclerosis in ApoE-null mice[ J]. J 
Cardiovasc Pharmacol Ther, 2012, 17(3): 334-343.Qin S, Kamanna VS, Lai JH, et al. Reverse D4F, an apolipoproteinAI mimetic peptide, inhibits atherosclerosis in ApoE-null mice[ J]. J 
Cardiovasc Pharmacol Ther, 2012, 17(3): 334-343.
							  
                                  
                                      
								  21、Yao S, Tian H, Miao C, et al. D4F alleviates macrophage-derived foam 
cell apoptosis by inhibiting CD36 expression and ER stress-CHOP 
pathway[ J]. J Lipid Res, 2015, 56(4): 836-847.Yao S, Tian H, Miao C, et al. D4F alleviates macrophage-derived foam 
cell apoptosis by inhibiting CD36 expression and ER stress-CHOP 
pathway[ J]. J Lipid Res, 2015, 56(4): 836-847.
							  
                                  
                                      
								  22、Bertrand E, Fritsch C, Diether S, et al. Identification of apolipoprotein 
A-I as a “STOP” signal for myopia[ J]. Mol Cell Proteomics, 2006, 
5(11): 2158-2166.Bertrand E, Fritsch C, Diether S, et al. Identification of apolipoprotein 
A-I as a “STOP” signal for myopia[ J]. Mol Cell Proteomics, 2006, 
5(11): 2158-2166.
							  
                                  
                                      
								  23、Duan X, Lu Q, Xue P, et al. Proteomic analysis of aqueous humor from 
patients with myopia[ J]. 2008 Mar 3;14: 370-377.Duan X, Lu Q, Xue P, et al. Proteomic analysis of aqueous humor from 
patients with myopia[ J]. 2008 Mar 3;14: 370-377.
							  
                                  
                                      
								  24、Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based 
quantitative proteomic analysis reveals significant up-regulation of 
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J]. 
Sci Rep, 2017, 7(1): 12649.Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based 
quantitative proteomic analysis reveals significant up-regulation of 
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J]. 
Sci Rep, 2017, 7(1): 12649.
							  
                                  
                                      
								  25、Summers JA , Harper AR , Feasley CL, et al. Identification of 
apolipoprotein A-I as a retinoic acid-binding protein in the eye[ J]. J 
Biol Chem, 2016, 291(36): 18991-19005.Summers JA , Harper AR , Feasley CL, et al. Identification of 
apolipoprotein A-I as a retinoic acid-binding protein in the eye[ J]. J 
Biol Chem, 2016, 291(36): 18991-19005.
							  
                                  
                                      
								  26、Chun RK, Shan SW, Lam TC, et al. Cyclic adenosine monophosphate 
activates retinal apolipoprotein a1 expression and inhibits myopic eye 
growth[ J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8151-8157.Chun RK, Shan SW, Lam TC, et al. Cyclic adenosine monophosphate 
activates retinal apolipoprotein a1 expression and inhibits myopic eye 
growth[ J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8151-8157.
							  
                                  
                                      
								  27、Yu FJ, Lam TC, Sze AY, et al. Alteration of retinal metabolism and 
oxidative stress may implicate myopic eye growth: evidence from 
discovery and targeted proteomics in an animal model[ J]. J Proteomics, 
2020, 221: 103684.Yu FJ, Lam TC, Sze AY, et al. Alteration of retinal metabolism and 
oxidative stress may implicate myopic eye growth: evidence from 
discovery and targeted proteomics in an animal model[ J]. J Proteomics, 
2020, 221: 103684.
							  
                                  
                                      
								  28、Flores R, Jin X, Chang J, et al. LCAT, ApoD, and ApoA1 expression and 
review of cholesterol deposition in the cornea[ J]. Biomolecules, 2019, 
9(12): 785.Flores R, Jin X, Chang J, et al. LCAT, ApoD, and ApoA1 expression and 
review of cholesterol deposition in the cornea[ J]. Biomolecules, 2019, 
9(12): 785.
							  
                                  
                                      
								  29、Schaefer EJ, Anthanont P, Diffenderfer MR , et al. Diagnosis and 
treatment of high density lipoprotein deficiency[ J]. Prog Cardiovasc 
Dis, 2016, 59(2): 97-106.Schaefer EJ, Anthanont P, Diffenderfer MR , et al. Diagnosis and 
treatment of high density lipoprotein deficiency[ J]. Prog Cardiovasc 
Dis, 2016, 59(2): 97-106.
							  
                                  
                                      
								  30、Hooper AJ, Hegele RA, Burnett JR . Tangier disease: update for 
2020[ J]. Curr Opin Lipidol, 2020, 31(2): 80-84.Hooper AJ, Hegele RA, Burnett JR . Tangier disease: update for 
2020[ J]. Curr Opin Lipidol, 2020, 31(2): 80-84.
							  
                                  
                                      
								  31、Lamiquiz-Moneo I, Civeira F, Gomez-Coronado D, et al. Lipid profile 
rather than the lcat mutation explains renal disease in familial LCAT 
deficiency[ J]. J Clin Med, 2019, 8(11): 1860.Lamiquiz-Moneo I, Civeira F, Gomez-Coronado D, et al. Lipid profile 
rather than the lcat mutation explains renal disease in familial LCAT 
deficiency[ J]. J Clin Med, 2019, 8(11): 1860.
							  
                                  
                                      
								  32、Ustaoglu M, Solmaz N, Baser B, et al. Ocular and genetic characteristics 
observed in two cases of fish-eye disease[ J]. Cornea, 2019, 38(3): 
379-383.Ustaoglu M, Solmaz N, Baser B, et al. Ocular and genetic characteristics 
observed in two cases of fish-eye disease[ J]. Cornea, 2019, 38(3): 
379-383.
							  
                                  
                                      
								  33、Tserentsoodol N, Gordiyenko NV, Pascual I, et al. Intraretinal lipid 
transport is dependent on high density lipoprotein-like particles and 
class B scavenger receptors[ J]. Mol Vis, 2006, 12: 1319-1333.Tserentsoodol N, Gordiyenko NV, Pascual I, et al. Intraretinal lipid 
transport is dependent on high density lipoprotein-like particles and 
class B scavenger receptors[ J]. Mol Vis, 2006, 12: 1319-1333.
							  
                                  
                                      
								  34、Ishida BY, Duncan KG, Bailey KR, et al. High density lipoprotein 
mediated lipid efflux from retinal pigment epithelial cells in culture[ J]. 
Br J Ophthalmol, 2006, 90(5): 616-620.Ishida BY, Duncan KG, Bailey KR, et al. High density lipoprotein 
mediated lipid efflux from retinal pigment epithelial cells in culture[ J]. 
Br J Ophthalmol, 2006, 90(5): 616-620.
							  
                                  
                                      
								  35、Liu J, Yao S, Wang S, et al. D-4F, an apolipoprotein A-I mimetic peptide, 
protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation 
of pigment epithelium-derived factor expression[ J]. J Cardiovasc 
Pharmacol, 2014, 63(6): 553-561.Liu J, Yao S, Wang S, et al. D-4F, an apolipoprotein A-I mimetic peptide, 
protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation 
of pigment epithelium-derived factor expression[ J]. J Cardiovasc 
Pharmacol, 2014, 63(6): 553-561.
							  
                                  
                                      
								  36、Biswas L, Zhou X, Dhillon B, et al. Retinal pigment epithelium 
cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a 
potential target for treating age-related macular degeneration[ J]. Hum 
Mol Genet, 2017, 26(22): 4327-4339.Biswas L, Zhou X, Dhillon B, et al. Retinal pigment epithelium 
cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a 
potential target for treating age-related macular degeneration[ J]. Hum 
Mol Genet, 2017, 26(22): 4327-4339.
							  
                                  
                                      
								  37、Jun S, Datta S, Wang L, et al. The impact of lipids, lipid oxidation, and 
inflammation on AMD, and the potential role of miRNAs on lipid 
metabolism in the RPE[ J]. Exp Eye Res, 2019, 181: 346-355.Jun S, Datta S, Wang L, et al. The impact of lipids, lipid oxidation, and 
inflammation on AMD, and the potential role of miRNAs on lipid 
metabolism in the RPE[ J]. Exp Eye Res, 2019, 181: 346-355.
							  
                                  
                                      
								  38、Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins 
levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J]. 
Acta Diabetol, 2018, 55(7): 681-689.Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins 
levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J]. 
Acta Diabetol, 2018, 55(7): 681-689.
							  
                                  
                                      
								  39、Sharma Y, Saxena S, Mishra A, et al. Apolipoprotein A-I and B and 
Subjective Global Assessment relationship can reflect lipid defects in 
diabetic retinopathy[ J]. Nutrition, 2017, 33: 70-75.Sharma Y, Saxena S, Mishra A, et al. Apolipoprotein A-I and B and 
Subjective Global Assessment relationship can reflect lipid defects in 
diabetic retinopathy[ J]. Nutrition, 2017, 33: 70-75.
							  
                                  
                                      
								  40、Sasongko MB, Wong TY, Nguyen TT, et al. Novel versus traditional risk 
markers for diabetic retinopathy[ J]. Diabetologia, 2012, 55(3): 666-670.Sasongko MB, Wong TY, Nguyen TT, et al. Novel versus traditional risk 
markers for diabetic retinopathy[ J]. Diabetologia, 2012, 55(3): 666-670.
							  
                                  
                                      
								  41、Simó R , Higuera M, García-R amírez M, et al. Elevation of 
apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients[ J]. Arch Ophthalmol, 
2008, 126(8): 1076-1081.Simó R , Higuera M, García-R amírez M, et al. Elevation of 
apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients[ J]. Arch Ophthalmol, 
2008, 126(8): 1076-1081.
							  
                                  
                                      
								  42、Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based 
quantitative proteomic analysis reveals significant up-regulation of 
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J]. 
Sci Rep, 2017, 7(1): 12649.Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based 
quantitative proteomic analysis reveals significant up-regulation of 
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J]. 
Sci Rep, 2017, 7(1): 12649.
							  
                                  
                                      
								  43、Ding N, Luo S, Yu J, et al. Vitreous levels of apolipoprotein A1 and 
retinol binding protein 4 in human rhegmatogenous retinal detachment 
associated with choroidal detachment[ J]. Mol Vis, 2018, 24: 252-260.Ding N, Luo S, Yu J, et al. Vitreous levels of apolipoprotein A1 and 
retinol binding protein 4 in human rhegmatogenous retinal detachment 
associated with choroidal detachment[ J]. Mol Vis, 2018, 24: 252-260.
							  
                                  
                                      
								  44、Simó R, García-Ramírez M, Higuera M, et al. Apolipoprotein A1 is 
overexpressed in the retina of diabetic patients[ J]. Am J Ophthalmol, 
2009, 147(2): 319-325.e1.Simó R, García-Ramírez M, Higuera M, et al. Apolipoprotein A1 is 
overexpressed in the retina of diabetic patients[ J]. Am J Ophthalmol, 
2009, 147(2): 319-325.e1.
							  
                                  
                                      
								  45、谭澄烨, 邵珺, 庄淼, 等. 载脂蛋白A-I对高糖环境下人视网膜血
管内皮细胞生物行为及VEGF表达的抑制作用[ J]. 中华实验眼
科杂志, 2017, 35(7): 586-590. 
 TAN CY, SHAO J, ZHUANG M, et al. Inhibitory effects 
of apolipoprotein A-I on biological behavior and VEGF expression of 
human retinal epithelial cells in high glucose environment[ J]. Chinese 
Journal of Experimental Ophthalmology, 2017, 35(7): 586-590.谭澄烨, 邵珺, 庄淼, 等. 载脂蛋白A-I对高糖环境下人视网膜血
管内皮细胞生物行为及VEGF表达的抑制作用[ J]. 中华实验眼
科杂志, 2017, 35(7): 586-590. 
 TAN CY, SHAO J, ZHUANG M, et al. Inhibitory effects 
of apolipoprotein A-I on biological behavior and VEGF expression of 
human retinal epithelial cells in high glucose environment[ J]. Chinese 
Journal of Experimental Ophthalmology, 2017, 35(7): 586-590.
							  
                                  
                                      
								  46、Xu Q, Cao S, Rajapakse S, et al. Understanding AMD by analogy: 
systematic review of lipid-related common pathogenic mechanisms in 
AMD, AD, AS and GN[ J]. Lipids Health Dis, 2018, 17(1): 3.Xu Q, Cao S, Rajapakse S, et al. Understanding AMD by analogy: 
systematic review of lipid-related common pathogenic mechanisms in 
AMD, AD, AS and GN[ J]. Lipids Health Dis, 2018, 17(1): 3.
							  
                                  
                                      
								  47、Pikuleva IA, Curcio CA. Cholesterol in the retina: the best is yet to 
come[ J]. Prog Retin Eye Res, 2014, 41: 64-89.Pikuleva IA, Curcio CA. Cholesterol in the retina: the best is yet to 
come[ J]. Prog Retin Eye Res, 2014, 41: 64-89.
							  
                                  
                                      
								  48、Lyssenko NN, Haider N, Picataggi A, et al. Directional ABCA1-
mediated cholesterol efflux and apoB-lipoprotein secretion in the 
retinal pigment epithelium[ J]. J Lipid Res, 2018, 59(10): 1927-1939.Lyssenko NN, Haider N, Picataggi A, et al. Directional ABCA1-
mediated cholesterol efflux and apoB-lipoprotein secretion in the 
retinal pigment epithelium[ J]. J Lipid Res, 2018, 59(10): 1927-1939.
							  
                                  
                                      
								  49、Dolz-Marco R, Balaratnasingam C, Messinger JD, et al. The border of 
macular atrophy in age-related macular degeneration: a clinicopathologic 
correlation[ J]. Am J Ophthalmol, 2018, 193: 166-177.Dolz-Marco R, Balaratnasingam C, Messinger JD, et al. The border of 
macular atrophy in age-related macular degeneration: a clinicopathologic 
correlation[ J]. Am J Ophthalmol, 2018, 193: 166-177.
							  
                                  
                                      
								  50、Curcio CA. Soft drusen in age-related macular degeneration: biology 
and targeting via the oil spill strategies[ J]. Invest Ophthalmol Vis Sci, 
2018, 59(4): AMD160-AMD181.Curcio CA. Soft drusen in age-related macular degeneration: biology 
and targeting via the oil spill strategies[ J]. Invest Ophthalmol Vis Sci, 
2018, 59(4): AMD160-AMD181.
							  
                                  
                                      
								  51、Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab 
for geographic atrophy due to age-related macular degeneration: 
chroma and spectri phase 3 randomized clinical trials[ J]. JAMA 
Ophthalmol, 2018, 136(6): 666-677.Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab 
for geographic atrophy due to age-related macular degeneration: 
chroma and spectri phase 3 randomized clinical trials[ J]. JAMA 
Ophthalmol, 2018, 136(6): 666-677.
							  
                                  
                                      
								  52、Fang L, Choi SH, Baek JS, et al. Control of angiogenesis by AIBPmediated cholesterol efflux[ J]. Nature, 2013, 498(7452): 118-122.Fang L, Choi SH, Baek JS, et al. Control of angiogenesis by AIBPmediated cholesterol efflux[ J]. Nature, 2013, 498(7452): 118-122.
							  
                                  
                                      
								  53、Schneider DA, Choi SH, Agatisa-Boyle C, et al. AIBP protects against 
metabolic abnormalities and atherosclerosis[ J]. J Lipid Res, 2018, 
59(5): 854-863.Schneider DA, Choi SH, Agatisa-Boyle C, et al. AIBP protects against 
metabolic abnormalities and atherosclerosis[ J]. J Lipid Res, 2018, 
59(5): 854-863.
							  
                                  
                                      
								  54、Zhang M, Zhao GJ, Yao F, et al. AIBP reduces atherosclerosis by 
promoting reverse cholesterol transport and ameliorating inflammation 
in apoE(-/-) mice[ J]. Atherosclerosis, 2018, 273: 122-130.Zhang M, Zhao GJ, Yao F, et al. AIBP reduces atherosclerosis by 
promoting reverse cholesterol transport and ameliorating inflammation 
in apoE(-/-) mice[ J]. Atherosclerosis, 2018, 273: 122-130.
							  
                                  
                                      
								  55、Zhu L , Parker M , Enemchukwu N, et al . Combination of 
apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal 
neovascularization in mice[ J]. Commun Biol, 2020, 3(1): 386.Zhu L , Parker M , Enemchukwu N, et al . Combination of 
apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal 
neovascularization in mice[ J]. Commun Biol, 2020, 3(1): 386.
							  
                                  
                                      
								  56、Mao R, Meng S, Gu Q, et al. AIBP limits angiogenesis through gammasecretase-mediated upregulation of notch signaling[ J]. Circ Res, 2017, 
120(11): 1727-1739.Mao R, Meng S, Gu Q, et al. AIBP limits angiogenesis through gammasecretase-mediated upregulation of notch signaling[ J]. Circ Res, 2017, 
120(11): 1727-1739.
							  
                                  
                                      
								  57、Zhao H, Jin H, Li Q, et al. Inhibition of pathologic retinal neovascularization 
by a small peptide derived from human apolipoprotein(a)[ J]. Invest 
Ophthalmol Vis Sci, 2009, 50(11): 5384-5395.Zhao H, Jin H, Li Q, et al. Inhibition of pathologic retinal neovascularization 
by a small peptide derived from human apolipoprotein(a)[ J]. Invest 
Ophthalmol Vis Sci, 2009, 50(11): 5384-5395.
							  
                                  
                                      
								  58、Wang Z, Zhao H, Ma JX, et al. Inhibition of pathological corneal 
neovascularization by a small peptide derived from human 
apolipoprotein (a) Kringle V[ J]. Cornea, 2014, 33(4): 405-413.Wang Z, Zhao H, Ma JX, et al. Inhibition of pathological corneal 
neovascularization by a small peptide derived from human 
apolipoprotein (a) Kringle V[ J]. Cornea, 2014, 33(4): 405-413.
							  
                                  
                                      
								  59、Rudolf M, Mir Mohi Sefat A, Miura Y, et al. ApoA-I mimetic peptide 
4F reduces age-related lipid deposition in murine Bruch’s membrane 
and causes its structural remodeling[ J]. Curr Eye Res, 2018, 43(1): 
135-146.Rudolf M, Mir Mohi Sefat A, Miura Y, et al. ApoA-I mimetic peptide 
4F reduces age-related lipid deposition in murine Bruch’s membrane 
and causes its structural remodeling[ J]. Curr Eye Res, 2018, 43(1): 
135-146.
							  
                                  
                                      
								  60、Rudolf M, Curcio CA, Schl?tzer-Schrehardt U, et al. Apolipoprotein 
A-I mimetic peptide L-4F removes Bruch’s membrane lipids in aged 
nonhuman primates[ J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 
461-472.Rudolf M, Curcio CA, Schl?tzer-Schrehardt U, et al. Apolipoprotein 
A-I mimetic peptide L-4F removes Bruch’s membrane lipids in aged 
nonhuman primates[ J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 
461-472.