您的位置: 首页 > 2022年2月 第37卷 第2期 > 文字全文
2022年2月 第37卷 第2期
目录

玻璃体切除术后白内障患者屈光预测误差来源的研究进展

来源期刊: 眼科学报 | 2022年2月 第37卷 第2期 143-149 发布时间:2021–05–11 收稿时间:2022/11/28 12:49:52 阅读量:3902
作者:
0
关键词:
经睫状体平坦部玻璃体切除术白内障屈光预测误差人工晶状体屈光力计算
DOI:
10.3978/j.issn.1000-4432.2021.08.04
随着微创玻璃体切除术(pars plana vitrectomy,PPV)的广泛开展和手术技术的提高,患者对手术后视觉质量的要求越来越高。白内障是PPV术后最常见并发症,而具有玻璃体切除史的白内障患者屈光变异大,预测难度高。本文综述了生物测量误差、人工晶状体屈光力计算公式选择以及有效晶状体位置预测等影响有玻璃体切除手术史的白内障患者术后屈光误差的主要因素,旨在为降低这一类特殊人群白内障术后屈光误差提供参考。
    近年来随着手术技术和仪器设备的不断进步,玻璃体切除术(pars plana vitrectomy,PPV)广泛开展,手术量逐年增加,手术预后质量也大大提高[1]。而白内障是PPV术后最常见的并发症,大量患者在PPV术后出现了白内障或原有白内障快速进展。既往研究[2-4]报道:高达63.2%~91.2%的患者在PPV术后2年内需要行白内障摘除手术。有PPV手术史的患者行白内障手术面临更多的挑战。一方面,悬韧带松弛及缺乏玻璃体支撑等解剖特点增加了手术难度,并发症发生率高;另一方面,因为玻璃体视网膜疾病的复杂性,以及疾病与手术造成的眼球解剖结构的改变,这些患者白内障术后屈光状态的变异性大,更容易出现屈光意外,极大地影响了患者的视觉质量和满意度。
    与普通白内障患者相比,PPV术后白内障患者屈光预测准确性更差。既往一项大样本研究[5]分析了欧洲15个国家从2008至2018年期间白内障手术情况,发现PPV术后白内障患者的绝对预测误差(mean absolute prediction error,MAE)为(0.52±0.75) D,要显著高于无PPV手术史的白内障患者的(0.43±0.51) D,且PPV手术史是白内障术后屈光误差大于1.0D的危险因素(OR=1.29,P<0.001)。Xu等[6]也报道了PPV术后白内障患者预测误差在±1.0 D的百分比显著低于对照组(75.6%~79.8% vs 87.7%~94.4%)。
    玻璃体腔填充物不仅会促进白内障的发生发展[7],也会进一步增加PPV术后白内障患者屈光预测的难度。Wang等[8]研究发现:与单纯行PPV手术或老年性白内障患者相比,既往行PPV联合玻璃体腔长效气体填充术的患者在白内障术后更易出现远视预测误差。该远视误差可能与2个因素有关:一是患者固视不佳影响生物测量的准确性,二是缺乏玻璃体的支撑及长效气体填充可能造成悬韧带松弛,最终导致人工晶状体(intraocular lens,IOL)位置后移。而对于硅油填充的患者,在行硅油取出联合白内障手术时,术后屈光状态预测更加不容乐观,41.8%的患者出现远视[9]
    随着微创玻璃体切除手术的广泛开展和手术技术的提高,PPV术后患者的预后有了极大的提高[10-11],患者对视觉质量的要求也越来越高。白内障术后的屈光状态与患者的视觉质量密切相关,对于有PPV手术史的白内障患者,如何提高其屈光预测的准确性受到业界的持续关注。目前,关于PPV术后白内障患者IOL计算与屈光预测误差的研究较少,其中一个原因在于既往传统手术后部分患者术后矫正视力差,无法达到既往研究[12]要求的最佳矫正视力≥20/40。本文将从生物测量误差、IOL屈光力计算公式选择以及有效晶状体位置(effective lens position,ELP)预测3个方面阐述PPV术后白内障患者屈光预测误差的来源,为进一步降低这一类特殊人群的屈光误差提供参考。

1 生物测量误差

    准确的生物测量是IOL屈光力计算的前提。在超声生物测量时代,眼轴长度(axial length,AL)测量是屈光误差的主要因素,占屈光误差来源的54%;而角膜曲率测量仅占屈光误差来源的8%[13]。平均0.1 mm的AL测量误差会导致0.27 D的屈光力误差。随着光学生物测量仪器如IOLMaster、Lenstar 900、OA2000等的应用,生物测量精度提高,AL在屈光误差的占比也降低至36%[14]。然而PPV术后白内障患者的生物测量仍然存在挑战,主要由于AL测量的准确性受玻璃体视网膜病变和玻璃体腔填充物等因素有关,而角膜曲率测量的影响相对较小。

1.1 眼轴测量

    1.1.1 玻璃体视网膜病变的影响
    PPV术后白内障患者拟行白内障手术时,仍可能存在累及视轴区的玻璃体视网膜病变如黄斑水肿、黄斑前膜等,与既往无PPV手术史的患者相比,AL测量的准确性面临更多挑战[15-16]。因为接触式A超测量的是角膜上皮至内界膜的距离,而基于光学相干干涉(partial coherence interferometry,PCI)原理的IOLMaster 500、以及基于扫频源前节光学相干断层成像技术的IOLMaster 700测量的是泪膜表面至视网膜色素上皮层的距离。当玻璃体视网膜病变累及视轴区,两者测量结果会出现明显差异,此时需要注意波形的识别与生物测量仪器的选择。
    研究[17-18]发现:对于黄斑水肿的患者,IOLMaster的AL测量值显著大于A超。Kojima等[19]进一步分析了IOLMaster测量黄斑病变患者的波形,发现18.7%的测量眼出现了双峰波形,作者认为前峰代表视网膜表面结构的反射,如视网膜前膜、视网膜内界膜、玻璃体后界膜;而后峰代表视网膜色素上皮层的反射,并进一步证明:如果使用后峰所对应的AL进行IOL屈光力计算,则屈光预测准确性与仅出现单峰的患者相近。对于黄斑水肿、黄斑裂孔等对视网膜色素上皮层位置无影响或影响较小的病变,采用IOLMaster进行生物测量能获得更稳定、相对准确的结果。而对于中心凹下脉络膜新生血管等疾病,因为视网膜色素上皮层的位置发生了变化,可能影响IOLMaster对视网膜色素上皮层的检测[20],其生物测量准确性仍需进一步研究。
    1.1.2 玻璃体腔填充物的影响
    由于玻璃体腔填充物与自然玻璃体存在显著的物理化学性质差异,在AL测量时必须考虑玻璃体腔填充物的影响。对于PPV联合长效气体填充的患者,由于长效气体如C2F6、C3F8、SF6完全吸收的平均时间为(18.0~67.7) d[21],而PPV术后行白内障手术的平均间隔时间为(350~374) d[22],即此类患者行白内障摘除术时,玻璃体腔已经被房水填充,故在此只讨论硅油填充物对AL测量的影响。硅油是PPV术中广泛应用的玻璃体腔填充物之一,临床常用黏度为1 000~5 000厘斯(centistokes,cs),折射率(1.405)高于自然玻璃体(1.336),与晶状体核的折射率接近(1.406)[23]。硅油眼的AL测量方法有很多,如超声生物测量、光学生物测量、CT、磁共振、术中生物测量等等,前两者在临床上最为常用。
    对硅油眼进行超声生物测量存在一定的困难,这与超声波在硅油的传播速度慢、硅油吸收超声波造成声能衰减、硅油未完全填充玻璃体腔等有关。超声波在硅油中的传输速度仅为自然玻璃体的2/3,按常规方法进行超声测量会导致AL的假性延长。因此,一些学者提出要根据硅油的黏度对声速进行校正。Murray等[24]提出对于1 300 cs的硅油,真实AL与测量AL的平均比值为0.71;Larkin等[25]则使用0.64作为1 000 cs硅油的校正因子。硅油未完全填充玻璃体腔会形成硅油后空间(retrosilicone space,RSS),该空间的平均轴向长度为(1.90±0.67) mm[26]。在不同体位下该间隙对AL测量的影响也不同[27],仰卧位受到的影响最大,因此在仰卧位下进行硅油眼AL测量时必须对RSS进行校正,忽略此空间可产生高达5D的屈光误差[26]
基于PCI技术的IOLMaster 500可以非接触、快速、简便地对硅油眼进行AL的光学生物测量,其测量光速极快,且坐位测量时较小的RSS空间对AL的影响可忽略不计。Dietlein等[28]使用PCI技术进行硅油眼的AL测量,发现91%测量眼的信噪比≥2,结果可靠稳定。Kunavisarut等[29]评估了取油前后IOLMaster与浸润式A超测量AL的准确性与可靠性,发现A超测量的AL偏短0.20 mm。同时,该研究发现采用IOLMaster的生物测量数据进行屈光预测,远视平均预测误差(mean prediction error,ME)为(0.60±0.23) D,显著低于浸润式A超的(1.79±1.04) D。
    近年来,临床上也出现了很多新的光学生物测量仪,如基于低相干光反射的Lenstar 900,基于扫频源前节光学相干断层成像技术的IOLMaster 700等。宋文琦等[30]使用Lenstar 900对拟行硅油取出联合白内障手术的患者进行AL测量,发现手术前后AL的差异无统计学意义,提示Lenstar 900可以精确地进行硅油填充眼的AL测量。陈伟等[31]比较了IOLMaster 500与IOLMaster 700测量硅油填充眼生物学参数的差异,发现2种仪器测量AL的一致性高,数值差异无统计学意义(25.05±3.37 mm vs 25.03±3.35 mm),且IOLMaster 700的AL检出率更高。

1.2 角膜曲率测量

    角膜曲率测量对屈光预测误差影响较小,仅占生物测量误差来源的8%。既往研究[32]表明:PPV手术会引起角膜参数的短期改变,但PPV术后1个月即可以恢复至术前测量值,且在术后3个月时仍保持稳定。Hirashima等[33]报道了27G微创PPV手术对角膜的影响,结果显示:患者手术前后平均角膜屈光力、散光、角膜像差等指标差异均无统计学意义。总体来说,PPV手术仅会造成角膜参数短期变化,对白内障手术预测误差影响不大。

2 IOL屈光力计算公式

    从1967年Fyodorov提出第1个公式以来,IOL屈光力计算公式迅速发展,从第3、4代的理论回归公式,发展到应用了人工智能等多种手段的第5代公式,白内障术后屈光意外越来越少[34]。目前,应用最新第5代IOL屈光力计算公式,可使80%的患者术后屈光误差控制在±0.50 D内,而95%~97%患者的屈光误差控制在±1.0 D内[35]。IOL公式选择是影响屈光预测误差的重要因素之一,对于PPV术后白内障患者,选择哪些公式有助于更准确地进行屈光预测是临床关注的重要问题。
    Lamson等[36]纳入57例(61眼)PPV术后白内障患者,评估了SRK/T、Holladay 1、Holladay 2、Barrett Universal II、Hill-RBF和Ladas Super公式的预测准确性,结果显示:除Holladay 2与眼轴调整法外,其余公式均出现了(0.23~0.45) D的远视漂移。在所有公式中,Holladay 2公式的准确性最高,MAE[(0.58±0.54) D]与绝对预测误差中位数[(median absolute prediction error,MedAE),0.405 D]最小,预测误差在±0.50 D的百分比最高(60.42%)。本团队[37]也评估了新一代公式(Barrett Universal II、Emmetropia Verifying Optical、Kane与Ladas Super)与传统公式(Haigis、Hoffer Q、Holladay 1、SRK/T)在111例(111眼)PPV术后白内障患者的预测准确性,结果显示:新公式的预测准确性明显优于传统公式,其中Kane、Emmetropia Verfying Optical公式屈光预测更准确。
    当AL偏离正常时,IOL屈光力计算公式的准确性下降。因此,PPV术后白内障患者需结合患者的AL综合选择IOL计算公式。Lee等[38]评估了45名PPV术后白内障患者IOL屈光力计算公式的预测准确性,对于AL>25 mm的患者,该学者推荐使用SRK/T公式,而对于AL<25 mm的患者,建议使用SRK II公式。本团队[37]的研究结果则表明:对于AL≥26 mm的患者,传统公式需要进行Wang-Koch眼轴调整法的校正,否则患者术后远视预测误差可高达0.51 D。眼轴调整法能有效降低Haigis、Hoffer Q、Holladay 1与SRK/T的远视预测误差,提高公式的预测准确性。
    既往关于硅油取出联合白内障手术患者IOL屈光力计算公式选择的研究较少。康道欢等[39]评估了传统公式(SRK II、SRK/T、Hoffer Q、Holladay 1、Haigis)在36例36眼行硅油取出联合白内障超声乳化和IOL植入的患者的预测准确性,发现当使用IOLMaster进行生物测量时,SRK/T公式的准确性最高;而使用A超联合手动角膜曲率计测量时,则推荐SRK II、SRK/T、Hoffer Q、Holladay 1公式。2020年本团队[37]根据患者进行白内障手术时玻璃体腔的状态,分为4个亚组:PPV术中未行硅油填充组、白内障术前已行硅油取出组、硅油取出联合白内障手术组、白内障术中未行硅油取出组。研究结果显示:各公式在4个亚组的预测准确性差异无统计学意义,提示当使用IOLMaster 700进行生物测量时,硅油填充不影响公式的预测准确性。此外,本团队也进一步纳入了211例(211眼)行硅油取出联合白内障手术的患者,筛选适合这类患者的IOL屈光力计算公式,研究发现:Emmetropia Verifying Optical公式在该人群屈光预测准确性最高,MedAE在总体与高度近视亚组分别为0.32 D、0.33 D,预测误差在±1.0 D的百分比为86.3%、83.0%[40]

3 有效晶体位置预测

    ELP的预测是IOL屈光力计算公式的核心,也是公式不断发展与优化的关键。从第1代公式将术后前房深度设定为固定值,到如今新公式采用AL、角膜曲率、术前ACD、晶状体厚度、角膜横径、性别等指标进行预测,人们对ELP的认识也逐步深入。根据Norrby[14]的研究,术后IOL位置预测占屈光误差的38%,是目前最主要的屈光误差来源。PPV手术会引起晶状体位置的改变,而缺乏玻璃体的支撑,更易发生囊袋皱缩等因素[41],均会对白内障术后IOL的位置产生影响,从而大大增加ELP预测的难度。

3.1 PPV手术对晶状体位置的影响

    PPV手术会引起晶状体位置的改变,从而影响白内障术前ELP预测。Toklu等[42]评估了PPV术中是否切除玻璃体基底部对眼前节生物学参数的影响,发现切除玻璃体基底部的患者术后前房深度(anterior chamber depth,ACD)显著增加,而未切除玻璃体基底部的患者ACD变化不显著。作者推测,残留的玻璃体基底部可能会起到稳定前房的作用,防止晶状体虹膜隔向后移动。
    PPV联合玻璃体腔填充的患者ACD变化趋势与单纯行PPV手术的患者存在差异。Neudorfer等[43]使用高频超声生物显微镜检测了PPV术后即刻ACD的变化,发现气体填充的患者术后ACD显著降低,而单纯PPV患者手术前后前房深度无明显改变。Huang等[44]则报道术后6个月与12个月时,PPV联合硅油/C3F8气体填充患者的ACD仍显著低于术前。PPV联合玻璃体腔填充术后ACD变浅可能与患者术后面向下体位、扁平部穿刺引起睫状体水肿、以及晶状体虹膜隔向前移动有关。然而,?alik等[45]的研究结果与上述相反,他们发现单纯PPV患者术后1周ACD下降,术后1个月略有上升;而硅油填充眼,术后1周与1个月均观察到ACD增加,作者解释原因可能为硅油对晶状体后表面产生凝聚力,俯卧位时硅油使晶状体整体向后移动。

3.2 PPV手术对IOL位置的影响

    PPV手术患者不仅仅晶状体位置发生了改变,由于缺乏玻璃体的支撑,白内障术后IOL的位置也可能会相对后移。Xu等[6]比较了有/无PPV手术史的白内障患者术后ACD的分布,发现有PPV手术史的患者白内障术后ACD略深,但差异无统计学意义。目前,关于PPV术后IOL位置的研究极少,因此需要更多的前瞻性队列研究来评估PPV手术对晶状体及其他眼前节参数的影响,分析不同PPV手术类型的患者白内障术后IOL位置。
    PPV手术不仅可能对IOL的轴向位置产生影响,也会影响IOL的倾斜与偏心。本团队前期研究[46]发现PPV手术史是白内障术后IOL倾斜的危险因素。在此基础上,我们进一步比较了PPV术后白内障患者与普通白内障患者IOL倾斜偏心的分布情况,结果显示:PPV术后白内障患者平均IOL倾斜与偏心[倾斜:(5.36±2.50) °;偏心:(0.27±0.17) mm]显著高于普通白内障患者[倾斜:(4.54±1.46) °;偏心:(0.19±0.12) mm];而长期玻璃体腔硅油填充、植入亲水型IOL以及糖尿病史是PPV术后白内障患者IOL倾斜与偏心增加的危险因素[47]

4 结语

    PPV术后并发性白内障患者术前进行屈光预测存在困难,与生物测量准确性差,未针对该特殊人群进行公式的优化,以及ELP预测不准密切相关。目前,采用新一代光学生物测量仪IOLMaster 700以及最新的IOL屈光力计算公式如Emmetropia Verifying Optical、Kane公式,或传统公式结合眼轴调整法等能获得相对较高的预测准确性。但仍需针对上述3个主要误差来源进行改进与优化,进一步提高屈光预测准确性,改善患者术后的视觉质量和满意度,也为部分患者植入高端IOL创造条件。

开放获取声明

    本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/

1、McLaughlin MD, Hwang JC. Trends in vitreoretinal procedures for medicare beneficiaries, 2000 to 2014[J]. Ophthalmology, 2017, 124(5): 667-673.
2、Cherfan GM, Michels RG, de Bustros S, et al. Nuclear sclerotic cataract after vitrectomy for idiopathic epiretinal membranes causing macular pucker[J]. Am J Ophthalmol, 1991, 111(4): 434-438.
3、Jackson TL, Nicod E, Angelis A, et al. Pars plana vitrectomy for vitreomacular traction syndrome: a systematic review and metaanalysis of safety and efficacy[J]. Retina, 2013, 33(10): 2012-2017.
4、Elhusseiny AM, Schwartz SG, Flynn HW Jr, et al. Long-term outcomes after macular hole surgery[J]. Ophthalmol Retina, 2020, 4(4): 369-376.
5、Lundstr?m M, Dickman M, Henry Y, et al. Cataract surgery of eyes with previous vitrectomy: risks and benefits as reflected in the European Registry of Quality Outcomes for Cataract and Refractive Surgery[J]. J Cataract Refract Surg, 2020, 46(10): 1402-1407.
6、Xu Y, Liu L, Li J, et al. Refractive outcomes and anterior chamber depth after cataract surgery in eyes with and without previous pars plana vitrectomy[J]. Curr Eye Res, 2021, 46(9): 1333-1340.
7、邓轩, 张静琳. 硅油对眼球组织影响机制的研究进展[J]. 眼科学报, 2018, 33(3): 200-304.
8、 Research progress on the effect mechanism of silicone oil on eyeball tissue[J]. Eye Science, 2018, 33(3): 200-304.
9、Wang JK, Chang SW. Refractive results of phacoemulsification in vitrectomized patients[J]. Int Ophthalmol, 2017, 37(3): 673-681.
10、Al-Habboubi HF, Al-Zamil W, Al-Habboubi AA, et al. Visual outcomes and refractive status after combined silicone oil removal/cataract surgery with intraocular lens implantation[J]. J Ophthalmic Vis Res, 2018, 13(1): 17-22.
11、Okamoto F, Okamoto Y, Fukuda S, et al. Vision-related quality of life and visual function after vitrectomy for various vitreoretinal disorders[J]. Invest Ophthalmol Vis Sci, 2010, 51(2): 744-751.
12、Smretschnig E, Falkner-Radler CI, Binder S, et al. Vision-related quality of life and visual function after retinal detachment surgery[J]. Retina, 2016, 36(5): 967-973.
13、Hoffer KJ, Aramberri J, Haigis W, et al. Protocols for studies of intraocular lens formula accuracy[J]. Am J Ophthalmol, 2015, 160(3): 403-405.e1.
14、Olsen T. Sources of error in intraocular lens power calculation[J]. J Cataract Refract Surg, 1992, 18(2): 125-129.
15、Norrby S. Sources of error in intraocular lens power calculation[J]. J Cataract Refract Surg, 2008, 34(3): 368-376.
16、Shu ZM, Li FQ, Che ST, et al. Topical review: causes of refractive error after silicone-oil removal combined with cataract surgery[J]. Optom Vis Sci, 2020, 97(12): 1099-1104.
17、Shousha MA, Yoo SH. Cataract surgery after pars plana vitrectomy[J]. Curr Opin Ophthalmol, 2010, 21(1): 45-49.
18、Ueda T, Nawa Y, Hara Y, et al. Relationship between the retinal thickness of the macula and the difference in axial length[J]. Graefes Arch Clin Exp Ophthalmol, 2006, 244(4): 498-501.
19、Attas-Fox L, Zadok D, Gerber Y, et al. Axial length measurement in eyes with diabetic macular edema: a-scan ultrasound versus IOLMaster[J]. Ophthalmology, 2007, 114(8): 1499-1504.
20、Kojima T, Tamaoki A, Yoshida N, et al. Evaluation of axial length measurement of the eye using partial coherence interferometry and ultrasound in cases of macular disease[J]. Ophthalmology, 2010, 117(9): 1750-1754.
21、Shentu XC, Cheng YL, Chen ZQ, et al. Differences in intraocular lens power calculation in patients with sub-foveal choroidal neovascularization[J]. Int J Ophthalmol, 2019, 12(1): 172-174.
22、Kontos A, Tee J, Stuart A, et al. Duration of intraocular gases following vitreoretinal surgery[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(2): 231-236.
23、Soliman MK, Hardin JS, Jawed F, et al. A database study of visual outcomes and intraoperative complications of postvitrectomy cataract surgery[J]. Ophthalmology, 2018, 125(11): 1683-1691.
24、Stefánsson E, Tiedeman J. Optics of the eye with air or silicone oil[J]. Retina, 1988, 8(1): 10-19.
25、Murray DC, Potamitis T, Good P, et al. Biometry of the silicone oil-filled eye[J]. Eye (Lond), 1999, 13(Pt 3a): 319-324.
26、Larkin GB, Flaxel CJ, Leaver PK, et al. Phacoemulsification and silicone oil removal through a single corneal incision[J]. Ophthalmology, 1998, 105(11): 2023-2027.
27、Nepp J, Krepler K, Jandrasits K, et al. Biometry and refractive outcome of eyes filled with silicone oil by standardized echography and partial coherence interferometry[J]. Graefes Arch Clin Exp Ophthalmol, 2005, 243(10): 967-972.
28、Takei K, Sekine Y, Okamoto F, et al. Measurement of axial length of eyes with incomplete filling of silicone oil in the vitreous cavity using x ray computed tomography[J]. Br J Ophthalmol, 2002, 86(1): 47-50.
29、Dietlein TS, Roessler G, Lüke C, et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry[J]. J Cataract Refract Surg, 2005, 31(5): 1006-1010.
30、Kunavisarut P, Poopattanakul P, Intarated C, et al. Accuracy and reliability of IOL master and A-scan immersion biometry in silicone oil-filled eyes[J]. Eye (Lond), 2012, 26(10): 1344-1348.
31、宋文琦, 刘菲. Lenstar LS900与改良A超测量硅油眼眼轴的对比研究[J]. 中国实用眼科杂志, 2017, 35(1): 54-56.
32、 Comparative study of Lenstar lS900 and modified A ultrasound in measuring the axial length of silicone oil filled eyes[J]. Chinese Journal of Practical Ophthalmology, 2017, 35(1): 54-56.
33、陈伟, 杨文利, 李栋军, 等. 不同型号IOL Master对硅油眼的生物测量比较[J]. 眼科, 2018, 27(5): 349-352.
34、 Comparison of IOL Master 500 and IOL Master 700 for measuring parameters in silicone oil filled eyes[J]. Ophthalmology in China, 2018, 27(5): 349-352.
35、Domniz YY, Cahana M, Avni I, et al. Corneal surface changes after pars plana vitrectomy and scleral buckling surgery[J]. J Cataract Refract Surg, 2001, 27(6): 868-872.
36、Hirashima T, Utsumi T, Hirose M, et al. Influences of 27-gauge vitrectomy on corneal topographic conditions[J]. J Ophthalmol, 2017, 2017: 8320909.
37、Fedorov SN, Kolinko AI, Kolinko AI, et al. A method of calculating the optical power of the intraocular lens[J]. Vestn Oftalmol, 1967, 80(4): 27-31.
38、Melles RB, Holladay JT, Chang WJ, et al. Accuracy of intraocular lens calculation formulas[J]. Ophthalmology, 2018, 125(2): 169-178.
39、Lamson TL, Song J, Abazari A, et al. Refractive outcomes of phacoemulsification after pars plana vitrectomy using traditional and new intraocular lens calculation formulas[J]. J Cataract Refract Surg, 2019, 45(3): 293-297.
40、Tan X, Zhang J, Zhu Y, et al. Accuracy of new generation intraocular lens calculation formulas in vitrectomized eyes[J]. Am J Ophthalmol, 2020, 217: 81-90.
41、Lee NY, Park SH, Joo CK, et al. Refractive outcomes of phacoemulsification and intraocular lens implantation after pars plana vitrectomy[J]. Retina, 2009, 29(4): 487-491.
42、康道欢, 娄慧, 徐国旭. 不同测量仪器和不同IOL屈光度计算公式对硅油填充合并白内障眼IOL屈光度测算的比较[J]. 中华实验眼科杂志, 2017, 35(3): 249-254.
43、 Comparison of IOL refractive power caculation using different apparatus and various formulas in cataract eyes with silicon oil tamponade[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(3): 249-254.
44、Zhang J, Wang W, Liu Z, et al. Accuracy of new-generation intraocular lens calculation formulas in eyes undergoing combined silicone oil removal and cataract surgery[J]. J Cataract Refract Surg, 2021, 47(5): 593-598.
45、王翔, 赵泽明, 李桂珍. 玻璃体切除术后高度近视合并白内障患者行白内障摘除联合人工晶体植入术后悬韧带及囊袋的变迁[J]. 眼科学报, 2018, 33(4): 242-247.
46、 Changes of suspensory ligament and capsular bag after vitrectomy in patients with high myopia and cataract after cataract extraction combined with intraocular lens implantation[J]. Eye Science, 2018, 33(4): 242-247.
47、Toklu E, Altinisik M, Elbay A, et al. Comparison of postoperative anterior segment changes associated with pars plana vitrectomy with and without vitreous base shaving[J]. Int J Ophthalmol, 2020, 13(11): 1745-1752.
48、Neudorfer M, Oren N, Barak A, et al. High-frequency ultrasound biomicroscopy of the anterior segment morphometry before and immediately after pars plana vitrectomy[J]. Eur J Ophthalmol, 2011, 21(2): 173-178.
49、Huang C, Zhang T, Liu J, et al. Changes in axial length, central cornea thickness, and anterior chamber depth after rhegmatogenous retinal detachment repair[J]. BMC Ophthalmol, 2016, 16: 121.
50、?alik B, ?ztürk M, Serdarogullari H, et al. Evaluation of anterior segment parameters using pentacam in silicone oil-injected patients after pars plana vitrectomy[J]. Indian J Ophthalmol, 2013, 61(11): 621-625.
51、Chen X, Gu X, Wang W, et al. Characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1126-1131.
52、Tan X, Liu Z, Chen X, et al. Characteristics and risk factors of intraocular lens tilt and decentration of phacoemulsification after pars plana vitrectomy[J]. Transl Vis Sci Technol, 2021, 10(3): 26.
1、周娟平. 四种IOL公式及其优化和调整优化公式在不同屈光介质长眼轴眼中的应用比较[D].兰州大学,2023.
1、国家自然科学基金(82070940,82070941)。This work was supported by the National Natural Science Foundation of China (82070940, 82070941).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
推荐阅读
出版者信息
中山眼科



中山大学