With the rapid development of artificial intelligence (AI) technology, the application of AI technology based on deep learning (DL) and machine learning (ML) in the medical field has received widespread attention. The application of AI in ophthalmology is gradually being shifted to a more comprehensive and in-depth level. Trained on corneal tomography, optical coherence tomography (OCT), slit-lamp images, and other techniques. AI can achieve robust performance in the diagnosis and treatment of corneal lesions, conjunctival lesions, cataract, glaucoma and other ophthalmic diseases. However, there are also some challenges in the application of AI in ophthalmology, including the lack of interpretability of results, lack of standardization of data sets, uneven quality of data sets, insufficient applicability of models and ethical issues. In the era of 5G and telemedicine, there are also many new opportunities for ophthalmic AI. In this review, we provided a summary of the state-of-the-art AI application in anterior segment ophthalmic diseases, potential challenges in clinical implementation and its development prospects, and provides reference information for the further development of artificial intelligence in the field of ophthalmology.
With the increasing coverage and availability of smart phones, the application of realizing intelligent health management has become an emerging research hotspot. The new generation of smart phones can perform health analysis by tracking the step numbers, monitoring heart rate and sleep quality, taking photos and other approaches, thereby becoming a new medical aid tool. With the continuous development of deep learning technology in the field of image processing, intelligent diagnosis based on medical imaging has blossomed in many disciplines, which is expected to completely change the traditional eye diseases diagnosis and treatment mode of hospitals. The conventional diagnosis of ophthalmic diseases often relies on various forms of images, such as slit lamp biological microscope, fundus imaging, optical coherence tomography, etc. As a result, ophthalmology has become one of the fastest growing areas of medical artificial intelligence (AI). The deployment of ophthalmological AI diagnosis and treatment system on smart phones is expected to improve the diagnostic efficiency and screening coverage to relieve the strain of medical resources, which has a great development prospect. This review focuses on the prevention and telemedicine progress of eye diseases based on deep learning and smart phones, taking diabetic retinopathy, glaucoma and cataract as examples to describe the specific research, application and prospect of deep learning and smart phones in the management of eye diseases.