糖尿病视网膜病变的遗传流行病学

发布时间:2022-12-06 浏览:79
Lisa Tom, Samaneh Davoudi, Lucia Sobrin

Lisa Tom, Samaneh Davoudi, Lucia Sobrin

Massachusetts Eye and Ear Infirmary, Department of OphthalmologyHarvard Medical SchoolBoston, MAUSA

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Lucia Sobrin, MD, MPH. Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, 12th floor, 1252E, Boston, MA 02114, USA. Email: Lucia_Sobrin@meei.harvard.edu.

摘要:糖尿病视网膜病变(DR)疾病负担在全世界是巨大的。虽然DR与糖化血红蛋白(HbA1c)和糖尿病病程相关,但遗传差异可能是DR易感性差异的原因。DR是一种多基因遗传病。然而,连锁和混合分析、候选基因关联研究和全基因组关联研究(GWAS)还没有发现许多可持续复制的DR基因位点。需要更大的、协作的、多种族的GWAS来识别影响较小的常见变异。严格将对照组定义为没有 DR 的长期糖尿病患者,病例组定义为有严重DR的长期糖尿病患者,这将有助于寻找与 DR 相关的基因。在独立队列中重复将是建立DR相关基因位点的关键。DR中线粒体DNA和表观遗传学的研究正在进行中。全外显子组测序为鉴定可能与DR发生有关的罕见变异提供了新的机会。DR的遗传流行病学需要继续研究,以阐明一种重要疾病的发病机制和治疗。

关键词:糖尿病视网膜病变(DR);遗传学;全基因组关联研究;遗传关联研究;糖尿病并发症


Received: 28 May 2017; Accepted: 12 July 2017; Published: 03 August 2017.

doi: 10.21037/aes.2017.07.04


引言Other Section

全世界估计有9300万糖尿病视网膜病变(DR)患者和1700万增殖性糖尿病视网膜病变(PDR)患者[1]。1型糖尿病(T1D)和2型糖尿病(T2D)的病程以及由血红蛋白A1c(HbA1c)测量的高血糖,是视网膜病变的强烈相关危险因素[2,3]。然而,大约仅有11%的视网膜病变风险变化归因于糖化血红蛋白和病程[4]。暂时性高血糖、高血压、高脂血症以及其他环境和遗传因素被认为是DR发展的额外决定因素[4-6]。遗传易感性可以很大程度上解释具有相似血糖水平的DR患者的异质性。

连锁不平衡(LD)研究、候选基因关联研究、混合分析和全基因组关联研究都试图阐明影响DR进展的遗传因素。这些研究有样本量不足、缺乏重复、 病例和对照组定义方式的差异的局限性[7,8]。DR中的线粒体DNA和表观遗传变化,包括miRNA,也已经开始被检测[9-12]。这篇综述将总结目前对DR遗传学的理解,突出主要发现和未来的研究方向。


遗传力和连锁不平衡Other Section

对双胞胎和其家庭的研究首次为DR研究建立了遗传学基础。在20世纪70—80年代,研究显示同卵双生的双胞胎患上的T1D和T2D的DR严重程度的一致性很高[13,14]。与无视网膜病变的糖尿病患者亲属相比,DR患者亲属患DR的风险高2-4倍[15-21]。这种家族聚集现象在南印度人、墨西哥裔美国人、华人和多种族人群中都有表现[15-21]。PDR和DR的遗传率分别为25%~52%和18%~27%[16,17]。但更极端的表型—尽管血糖水平相对较低,仍进展为晚期PDR,或者数十年未控制的糖尿病患者并没有发生DR,可能比更常见的表型有更强大的遗传基础。然而,找到足够的具有罕见表型的患者是一个挑战。

在20世纪90年代和2000年代,连锁分析发现了可能与DR相关的基因位点。优势对数计分法(LOD)分数部分取决于取样基因组的密度,3.3分是对全基因组显著性定义最不严格的显著性阈值[22]。在皮马印第安人群体中进行的全基因组连锁分析显示染色体1p(LOD3.1)存在连锁[17]。无条件连锁分析在墨西哥裔美国人群体中发现了位于第3和12号染色体上的暗示连锁[23]。连锁分析并没有确定决定性DR基因,由于其经典地用于确定大型多代系谱中表现孟德尔遗传的单基因疾病的位点,而DR很可能是一种环境相关的复杂多基因疾病[8,24]


候选基因关联研究Other Section

旨在确定常见遗传变异的基于人群的研究对于像 DR 等多基因疾病来说更有希望。候选基因关联研究调查对比病例组与对照组中,在该疾病中假定具有作用的基因变异是否更为常见。DR的理想关联研究有几个特点。首先,DR应该通过眼底照片和标准分级来确定,比如早期治疗糖尿病视网膜病变研究(ETDRS)标准。病例应该是进展期的(PDR或糖尿病性黄斑水肿),因为这些可能是更易遗传的疾病形式。选择非糖尿病患者组成的对照组可以鉴定出导致糖尿病的基因,而不是DR特异性的基因。理想情况下,对照组病例应该是有糖尿病但没有DR或者轻度DR患者,最好是对照组也有较长的糖尿病病程,至少10-15年。这最大限度地减少了将病例错误分类为对照组,因为一些没有DR且糖尿病病程较短的患者将继续发展为糖尿病病程较长的严重DR。目前尚不清楚T2D和T1D患者的DR风险变异是否会不同。在临床上,T1D和T2D患者DR的相似性大于差异性,因此可能存在一些共同的变异。然而,为了限制异质性,许多遗传学研究将发现阶段限制在一种糖尿病类型。最终,大样本量和独立的重复队列是可靠识别我们假设在DR中有一定的影响的常见变异的关键。

先前的综述总结了一些候选DR基因的发现[7,8,12,25,26]。肾素-血管紧张素系统以及血管内皮生长因子(VEGF)、促红细胞生成素(EPO)、转录因子7样蛋白2(TCF7L2)、醛糖还原酶(AKR1B1)、晚期糖基化终产物受体(RAGE)、一氧化氮合酶(NOS3)、亚甲基四氢叶酸还原酶(MTHFR),溶质载体家族19成员3(SLC19A3)、核因子红细胞2样2(NFE2L2)、CDK5调节亚基相关蛋白1样蛋白1(CDKAL1)和补体途径基因已被研究[7,8,12,25-31].没有出现一致的、严格复制的DR基因,可能是由于样本量不足、缺乏对基因变异的全面覆盖,或者对相关候选基因的错误假设[12,32]

候选基因关联资源(CARe)对DR进行了一项最有效的大样本量(n=8040)的候选基因研究,包括发现和重复队列[33]。这项研究对炎症、代谢和心血管通路中的2000个基因进行了全面覆盖,并修正了多个假设检验。这种策略通过在相关路径中选择多个基因并最大限度地覆盖这些基因中的所有变异,增加了选择正确变异的可能性[33]。P选择素(SELP)和艾杜糖苷酸酶(IDUA)与发现样本中的DR相关,但与重复队列中的DR无关。EPO关联与初始报告一致[34],但经多重假设检验校正后并不显著[33]

在杰克逊心脏研究(JHS)的DR研究中,进一步跟踪P选择素的关联性。在JHS的629名患有T2D的非裔美国人中,Penman等人表明血浆P选择素水平较高与DR[比值比(OR)=1.11,95%可信区间(CI)=1.02-1.21,P=0.02]和PDR(OR=1.23,95% CI=0.03-1.46,P=0.02)相关[35]。无视网膜病变的T2D患者P选择素基因单核苷酸多态性(SNP)rs6128的等位基因纯合子(TT)比视网膜病变患者高(P=0.03)[35]。在白种人中,P选择素的这个相同变异发现与DR相关,其作用方向与CARe 发现样本中的相同[33,35]

最近,Porta等人发现编码硫胺素转运蛋白的SLC19A3的变异与严重DR的风险降低有关。硫胺素调节细胞内葡萄糖代谢,支持参与 DR 的先验假设。研究人群由FinnDiane研究的T1D患者组成:1566例重度DR(定义为ETDRS评分≥53或有任何视网膜激光治疗)和218名无/轻度DR对照组(ETDRS评分<35分,无激光治疗,糖尿病病程>20年)。SLC19A3中的两个SNP在LD中相互作用(Finndiane r2=0.93)与降低严重DR风险和终末期肾病和严重DR的联合表型相关:rs12694743[P=3.81×10?6,OR 0.51(95% CI:0.38–0.68)]和rs6713116[P=3.15×10?6,OR 0.41(0.28–0.60)]。然而,这两个SNP与DR的负相关不能在两个独立的队列中重复[28],分别是糖尿病控制和并发症试验(DCCT)/糖尿病干预和并发症流行病学(EDIC)[3]和威斯康星州糖尿病视网膜病变流行病学研究(WESDR) [36]。然而,在 FinnDiane 和 WESDR 队列研究的荟萃分析中,研究发现即使在调整体重指数和HbA1c(P=2.30×10?8)后,rs12694743与严重DR和终末期肾病联合表型风险降低有关[28]


混合映射Other Section

混血个体从两个不同的大陆群体中继承染色体片段,这两个群体在进化史上的混合时间相对较晚,在过去的20代内[37]。非裔美国人是欧洲和非洲血统混合的一个例子。如果变异在祖先群体之间的频率不同,则混血个体可以检测到与疾病相关的变异。

Tandon等人研究了非裔美国人的T2D患者:305例DR病例(ETDRS评分>60)和1135例对照组(ETDRS评分<60)[38]。经临床因素(糖尿病病程、糖化血红蛋白、收缩压)、人口统计学因素和社会经济因素(收入、教育)调整后,非洲血统的比例与PDR无关。混合分析未能确定全基因组的重要位点[38]。混合分析可能需要更大的样本量来揭示DR基因的潜在位点。


全基因组关联研究Other Section

全基因组关联研究(GWAS)不是研究假设的候选基因,而是不可知论地分析整个基因组中的SNP,这些SNP通常在人类之间是不同的。更高的显著性阈值P<5×10?8是该领域公认的标准,相关关系应在独立队列中重复[8]。在许多复杂疾病中,包括年龄相关性黄斑变性(AMD),GWAS已经成功地识别基因,为了解发病机制和治疗提供了新的机会[39-42]

表1总结了DR的GWAS。这些GWAS的结果在先前的综述[8,12]中得到了很好的总结。其中两项GWAS研究发现在他们的发现样本中具有P<5×10-8的全基因组显性变异,但没有一项研究对被测试的多个遗传模型进行校正,也没有对其结果进行独立重复[12,47]。一项GWAS发现了一个全基因组,包括在独立的队列中重复。Burdon等人 在对三组人群进行荟萃分析的研究中发现rs9896052与威胁视力DR之间的全基因组意义相关(P=4.15×10?8),人群分别为T2D的高加索患者、T2D的印度患者和T1D的高加索患者[50]。该位点下游的生长因子受体结合蛋白2(GRB2)基因与磷酸化胰岛素受体底物1结合,通过Ras激活MAPK途径,从而对胰岛素产生反应[51,52]。该基因还参与VEGF信号转导[52]。Burdon等人显示GRB2在人类视网膜中的表达,并在小鼠视网膜病变模型中表达增加,支持该位点与DR之间的可能关联[50]

表1 糖尿病视网膜病变中已发表的GWAS

表1 糖尿病视网膜病变中已发表的GWAS
四项研究试图在独立队列中重复已报道的与DR相关的位点[32,53-55]。Grassi等人于2012年首次尝试重复WESDR队列中在糖尿病肾脏遗传学(GoKinD)和EDIC发现队列(44)中确定的389个假定相关SNPs。该研究比较了208例(先前激光治疗PDR或糖尿病黄斑水肿)和261例对照组(WESDR中的所有其他患者)。关联没有达到全基因组意义[53]


2014年,McAuley等人检测了Grassi等人[44]和Huang等人[45]先前报道的24个最重要的SNPs,在澳大利亚以高加索人为主的T1D和T2D人群中:163例患有重度非增殖性糖尿病视网膜病变(NPDR)或PDR,300例患有T2D 5年或5年以上且无或轻度DR的对照组[54]。McAuley等人发现rs1073203与显性模型相关(P=0.005)。在GoKinD和EDIC T1D队列中,首次报道SNP rs1073203与严重DR(糖尿病性黄斑水肿或PDR)相关(P=8.5×10?6)[44]. McAuley等人还发现rs4838605在加性模型中显著(P=0.047)。台湾地区T2D的GWAS报告rs4838605与DR相关(P=1.87×10?9[45],提高了该位点可能影响不同种族DR的可能性[12,47,54]。对这些变异的多个模型进行测试,使得在对多个假设检验进行校正之后,很难确定它们是否真的有意义。

2015年,Hosseini等人[32]尝试在DR 34个独立位点复制90个SNPs(P<10?5,11个基因位点54个SNPs)来自四项先前的GWAS研究[43-46]和两项覆盖广泛的大型候选基因关联研究[33,56]。Hosseini等人也使用了无糖尿病受试者视网膜病变GWAS最常见的信号(P<10?5,中11个基因座的22个SNPs)[32,57]。从先前的候选基因关联研究中发现的与DR相关的SNPs(P<0.05,16个基因座中的18个SNPs)也包括在内[25,58-74]。其中,在Hosseini等人的数据中对87个SNPs(32个位点)进行了基因分型或归类,并为另外3个SNP确定了合适的替代物(r2>0.9)。Hosseini等人在考虑多重假设检验后,在34个独立基因位点的90个被测SNPs中没有发现任何全基因组的显著关联[32]。Peng等人在一项针对中国T2D患者(819例有DR,1153例无DR)的大型研究中,同样没有发现先前在三个GWAS[墨西哥裔美国人[43]、GoKinD 和EDIC[44]、和WESDR[43,44,53])]中报告的40个SNPs与全基因组范围内的任何显著相关[55]

对DR来说,重复具有全基因组意义的关联一直是一个挑战。一个促成因素是DR的变异可能影响很小,需要更大的样本量进行检测。在许多其他复杂疾病中,需要超过 20,000 名参与者的样本量才能识别可复制的变异[75]。到目前为止,还没有为DR收集到如此大的样本量。通过更大的协作,将有可能为DR收集到更大的GWAS样本量。为了增加成功的可能性,需要对病例组和对照组进行精确的分型和严格的定义。


线粒体DNA和表观遗传学Other Section

线粒体DNA(mtDNA)和表观遗传学在DR中的作用的探索正在开始。Mishra等人使用加长PCR测量有糖尿病大鼠和小鼠模型外周血线粒体DNA损伤[9]。与年龄匹配的正常大鼠相比,糖尿病大鼠mtDNA的长短扩增子比率显著降低,mtDNA拷贝数减少,提示糖尿病大鼠mtDNA损伤更严重(P<0.05)[9]。硫辛酸预防糖尿病大鼠视网膜病变,降低mtDNA损伤(P<0.05)。超氧化物歧化酶2(SOD2)的过度表达或基质金属肽酶9(MMP-9)的抑制可预防糖尿病小鼠的视网膜病变,并且这些小鼠群体也没有显示糖尿病小鼠中mtDNA的增加[9]。与无视网膜病变患者(n=5)相比,Mishra等人还测量了糖尿病视网膜病变患者(n=6)的线粒体DNA损伤显著增加(P<0.05)[9]

Estopinal等人表明,线粒体单倍型与高加索人DR的严重程度相关(NPDR患者153例,PDR患者138例)[76]。研究发现,不同线粒体单倍型组的PDR频率存在显著差异(P=0.027)。在这项研究中,一个独立的高加索DR患者队列(44 名NPDR;57 名PDR)证实了这种联系(P=0.0064)[76]。在联合队列中,来自普通单倍体组H的患者更有可能发生PDR[OR=2.0(95% CI=1.3-3.0),P=0.0012]。单倍型组UK患者发生PDR的风险降低[OR=0.5(95%CI=0.3-0.8,P=0.0049)]。在多因素logistic回归分析中,这些与PDR的相关性独立于HbA1c、糖尿病病程和高血压; 单倍型H组[OR=2.1(95% CI=1.3-3.4)];单倍型组UK(OR=0.41(95%CI=0.23-0.73))[76]

目前,对DR表观遗传学机制的研究正在进行[77]。糖尿病患者的眼睛已经显示出miRNA的变化,包括miR200b的上调,miRNA是一种VEGF调节的miRNA[10]。miR-29b的增加可能对链脲佐菌素诱导的糖尿病大鼠视网膜神经节细胞凋亡起到保护作用[11]。Agardh等人分析了T1D患者全基因组485577个位点DNA甲基化。采用错误发现率分析法对多重假设检验进行了解释。PDR(n=28)的病例和对照组(n=30)被定义为至少10年糖尿病,无或轻度DR。研究发现PDR组中349个CpG位点存在差异DNA甲基化,代表233个基因,其中大多数(79%)甲基化水平降低。在这些差异甲基化基因中,自然杀伤细胞介导的细胞毒性途径显著富集(P=0.006)[78]


结论Other Section

目前对DR遗传学的了解还不完全。连锁研究、候选基因关联研究、混合分析和GWAS尚未实现许多与DR相关的基因位点或基因的一致重复。

GWAS将需要更大的国际合作努力来聚集多种族群体并增加样本量。为了最大限度地确定真正的变异,病例应定义为PDR或糖尿病性黄斑水肿患者(根据标准影像学分级),而对照组应严格定义为尽管糖尿病病程较长(15-20年)却无DR的患者。轻度DR患者有时被分为病例组[48],有时被分为对照组[43,79],使研究领域偏向于无果。未来的研究还需要正确考虑血糖控制,这与DR密切相关。独立数据集中的重复也将是加强未来GWAS研究发现的关键[8,12]。此外,罕见变异和DR风险的检查还没有尝试。全外显子组测序可能揭示相关的罕见变异,特别是在检查极端表型的情况下。表观遗传学和线粒体DNA也值得进一步研究。在这些领域的持续研究和针对GWAS的大型合作有可能阐明DR的遗传基础。


AcknowledgmentsOther Section

Funding: None.


FootnoteOther Section

Provenance and Peer Review: This article was commissioned by the Guest Editors (Chi-Chao Chan and Mingguang He) for the series “Medical Retinal Diseases and Epidemiology” published in Annals of Eye Science. The article has undergone external peer review.

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/aes.2017.07.04). The series “Medical Retinal Diseases and Epidemiology” was commissioned by the editorial office without any funding or sponsorship. The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). 


ReferencesOther Section

  1. Yau JW, Rogers SL, Kawasaki R, et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012;35:556-64. [Crossref] [PubMed]
  2. Klein R, Klein BE, Moss SE, et al. Relationship of hyperglycemia to the long-term incidence and progression of diabetic retinopathy. Arch Intern Med 1994;154:2169-78. [Crossref] [PubMed]
  3. Group DCaCTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-86. [Crossref] [PubMed]
  4. Lachin JM, Genuth S, Nathan DM, et al. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial--revisited. Diabetes 2008;57:995-1001. [Crossref] [PubMed]
  5. Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med 2010;123:S3-S11. [Crossref] [PubMed]
  6. Hirsch IB, Brownlee M. Beyond hemoglobin A1c—need for additional markers of risk for diabetic microvascular complications. JAMA 2010;303:2291-2. [Crossref] [PubMed]
  7. Kuo JZ, Wong TY, Rotter JI. Challenges in elucidating the genetics of diabetic retinopathy. JAMA Ophthalmol 2014;132:96-107. [Crossref] [PubMed]
  8. Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep 2014;14:515. [Crossref] [PubMed]
  9. Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2016;57:4035-44. [Crossref] [PubMed]
  10. McArthur K, Feng B, Wu Y, et al. MicroRNA-200b regulates vascular endothelial growth factor–mediated alterations in diabetic retinopathy. Diabetes 2011;60:1314-23. [Crossref] [PubMed]
  11. Silva VA, Polesskaya A, Sousa TA, et al. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011;17:2228. [PubMed]
  12. Davoudi S, Sobrin L. Novel Genetic Actors of Diabetes-Associated Microvascular Complications: Retinopathy, Kidney Disease and Neuropathy. Rev Diabet Stud 2015;12:243-59. [Crossref] [PubMed]
  13. Leslie RD, Pyke DA. Diabetic retinopathy in identical twins. Diabetes 1982;31:19-21. [Crossref] [PubMed]
  14. Pyke DA, Tattersall RB. Diabetic Retinopathy in Identical Twins. Diabetes 1973;22:613-8. [Crossref] [PubMed]
  15. Group DCaCTR. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 1997;46:1829. [Crossref] [PubMed]
  16. Hietala K, Forsblom C, Summanen P, et al. Heritability of proliferative diabetic retinopathy. Diabetes 2008;57:2176-80. [Crossref] [PubMed]
  17. Looker HC, Nelson RG, Chew E, et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 2007;56:1160-6. [Crossref] [PubMed]
  18. Rema M, Saravanan G, Deepa R, et al. Familial clustering of diabetic retinopathy in South Indian type 2 diabetic patients. Diabet Med 2002;19:910-6. [Crossref] [PubMed]
  19. Zhang X, Gao Y, Zhou Z, et al. Familial clustering of diabetic retinopathy in Chongqing, China, type 2 diabetic patients. Eur J Ophthalmol 2010;20:911-8. [PubMed]
  20. Hallman DM, Huber JC, Gonzalez VH, et al. Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care 2005;28:1163-8. [Crossref] [PubMed]
  21. Arar NH, Freedman BI, Adler SG, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci 2008;49:3839-45. [Crossref] [PubMed]
  22. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241-7. [Crossref] [PubMed]
  23. Hallman DM, Boerwinkle E, Gonzalez VH, et al. A genome-wide linkage scan for diabetic retinopathy susceptibility genes in Mexican Americans with type 2 diabetes from Starr County, Texas. Diabetes 2007;56:1167-73. [Crossref] [PubMed]
  24. Mishra B, Swaroop A, Kandpal RP. Genetic components in diabetic retinopathy. Indian J Ophthalmol 2016;64:55. [Crossref] [PubMed]
  25. Abhary S, Hewitt AW, Burdon KP, et al. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes 2009;58:2137-47. [Crossref] [PubMed]
  26. Liew G, Klein R, Wong TY. The role of genetics in susceptibility to diabetic retinopathy. Int Ophthalmol Clin 2009;49:35-52. [Crossref] [PubMed]
  27. Luo S, Wang F, Shi C, et al. A Meta-Analysis of Association between Methylenetetrahydrofolate Reductase Gene (MTHFR) 677C/T Polymorphism and Diabetic Retinopathy. Int J Environ Res Public Health 2016;13:E806 [Crossref] [PubMed]
  28. Porta M, Toppila I, Sandholm N, et al. Variation in SLC19A3 and Protection From Microvascular Damage in Type 1 Diabetes. Diabetes 2016;65:1022-30. [Crossref] [PubMed]
  29. Xu X, Sun J, Chang X, et al. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J Cell Mol Med 2016;20:2078-88. [Crossref] [PubMed]
  30. Liu NJ, Xiong Q, Wu HH, et al. The association analysis polymorphism of CDKAL1 and diabetic retinopathy in Chinese Han population. Int J Ophthalmol 2016;9:707-12. [PubMed]
  31. Yang MM, Wang J, Ren H, et al. Genetic Investigation of Complement Pathway Genes in Type 2 Diabetic Retinopathy: An Inflammatory Perspective. Mediators Inflamm 2016;2016:1313027.
  32. Hosseini SM, Boright AP, Sun L, et al. The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Hum Genet 2015;134:247-57. [Crossref] [PubMed]
  33. Sobrin L, Green T, Sim X, et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe). Invest Ophthalmol Vis Sci 2011;52:7593-602. [Crossref] [PubMed]
  34. Tong Z, Yang Z, Patel S, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci 2008;105:6998-7003. [Crossref] [PubMed]
  35. Penman A, Hoadley S, Wilson JG, et al. P-selectin plasma levels and genetic variant associated with diabetic retinopathy in African Americans. Am J Ophthalmol 2015;159:1152-1160.e2. [Crossref] [PubMed]
  36. Klein R, Klein BE, Moss SE. Epidemiology of proliferative diabetic retinopathy. Diabetes Care 1992;15:1875-91. [Crossref] [PubMed]
  37. Shriner D. Overview of Admixture Mapping. Curr Protoc Hum Genet 2013;Chapter 1:Unit 1.23.
  38. Tandon A, Chen CJ, Penman A, et al. African Ancestry Analysis and Admixture Genetic Mapping for Proliferative Diabetic Retinopathy in African Americans. Invest Ophthalmol Vis Sci 2015;56:3999-4005. [Crossref] [PubMed]
  39. Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery. Am J Hum Genet 2012;90:7-24. [Crossref] [PubMed]
  40. Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet 2013;45:433-9, 439e1-2.
  41. Neale BM, Fagerness J, Reynolds R, et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci 2010;107:7395-400. [Crossref] [PubMed]
  42. Yu Y, Bhangale TR, Fagerness J, et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 2011;20:3699-709. [Crossref] [PubMed]
  43. Fu YP, Hallman DM, Gonzalez VH, et al. Identification of diabetic retinopathy genes through a genome-wide association study among Mexican-Americans from Starr County, Texas. J Ophthalmol 2010;2010. pii: 861291.
  44. Grassi MA, Tikhomirov A, Ramalingam S, et al. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet 2011;20:2472-81. [Crossref] [PubMed]
  45. Huang YC, Lin JM, Lin HJ, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology 2011;118:642-8. [Crossref] [PubMed]
  46. Sheu WH, Kuo JZ, Lee IT, et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum Mol Genet 2013;22:3165-73. [Crossref] [PubMed]
  47. Lin HJ, Huang YC, Lin JM, et al. Association of genes on chromosome 6, GRIK2, TMEM217 and TMEM63B (linked to MRPL14) with diabetic retinopathy. Ophthalmologica 2013;229:54-60. [Crossref] [PubMed]
  48. Awata T, Yamashita H, Kurihara S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One 2014;9:e111715 [Crossref] [PubMed]
  49. Awata T, Yamashita H, Kurihara S, et al. Correction: a genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One 2015;10:e0126789 [Crossref] [PubMed]
  50. Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 2015;58:2288-97. [Crossref] [PubMed]
  51. Skolnik EY, Lee CH, Batzer A, et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signaling. EMBO J 1993;12:1929-36. [PubMed]
  52. Anselmi F, Orlandini M, Rocchigiani M, et al. c-ABL modulates MAP kinases activation downstream of VEGFR-2 signaling by direct phosphorylation of the adaptor proteins GRB2 and NCK1. Angiogenesis 2012;15:187-97. [Crossref] [PubMed]
  53. Grassi MA, Tikhomirov A, Ramalingam S, et al. Replication Analysis for Severe Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2012;53:2377-81. [Crossref] [PubMed]
  54. McAuley AK, Wang JJ, Dirani M, et al. Replication of Genetic Loci Implicated in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2014;55:1666-71. [Crossref] [PubMed]
  55. Peng D, Wang J, Zhang R, et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetologia 2015;58:1231-8. [Crossref] [PubMed]
  56. Roy MS, Hallman D, Fu Y, et al. Assessment of 193 candidate genes for retinopathy in african americans with type 1 diabetes. Arch Ophthalmol 2009;127:605-12. [Crossref] [PubMed]
  57. Jensen RA, Sim X, Li X, et al. Genome-wide association study of retinopathy in individuals without diabetes. PLoS One 2013;8:e54232 [Crossref] [PubMed]
  58. Lu Y, Ge Y, Hu Q, et al. Association between angiotensin-converting enzyme gene polymorphism and diabetic retinopathy in the Chinese population. J Renin Angiotensin Aldosterone Syst 2012;13:289-95. [Crossref] [PubMed]
  59. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia 1998;41:47-53. [Crossref] [PubMed]
  60. Zhou JB, Yang JK. Angiotensin-converting enzyme gene polymorphism is associated with proliferative diabetic retinopathy: a meta-analysis. Acta Diabetologica 2010;47:187-93. [Crossref] [PubMed]
  61. Niu W, Qi Y, Wu Z, et al. A meta-analysis of receptor for advanced glycation end products gene: four well-evaluated polymorphisms with diabetes mellitus. Mol Cell Endocrinol 2012;358:9-17. [Crossref] [PubMed]
  62. Yuan D, Liu Q. Association of the receptor for advanced glycation end products gene polymorphisms with diabetic retinopathy in type 2 diabetes: a meta-analysis. Ophthalmologica 2012;227:223-32. [Crossref] [PubMed]
  63. Hu C, Zhang R, Yu W, et al. CPVL/CHN2 genetic variant is associated with diabetic retinopathy in Chinese type 2 diabetic patients. Diabetes 2011;60:3085-9. [Crossref] [PubMed]
  64. Zintzaras E, Chatzoulis DZ, Karabatsas CH, et al. The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type 2 diabetes: a meta-analysis. J Hum Genet 2005;50:267-75. [Crossref] [PubMed]
  65. Niu W, Qi Y. An updated meta-analysis of methylenetetrahydrofolate reductase gene 677C/T polymorphism with diabetic nephropathy and diabetic retinopathy. Diabetes Res Clin Pract 2012;95:110-8. [Crossref] [PubMed]
  66. Zhao S, Li T, Zheng B, et al. Nitric oxide synthase 3 (NOS3) 4b/a, T-786C and G894T polymorphisms in association with diabetic retinopathy susceptibility: a meta-analysis. Ophthalmic Genet 2012;33:200-7. [Crossref] [PubMed]
  67. Ma J, Li Y, Zhou F, et al. Meta-analysis of association between the Pro12Ala polymorphism of the peroxisome proliferator–activated receptor-γ2 gene and diabetic retinopathy in Caucasians and Asians. Mol Vis 2012;18:2352-60. [PubMed]
  68. Zhang T, Pang C, Li N, et al. Plasminogen activator inhibitor-1 4G/5G polymorphism and retinopathy risk in type 2 diabetes: a meta-analysis. BMC Med 2013;11:1. [Crossref] [PubMed]
  69. Tian C, Fang S, Du X, et al. Association of the C47T polymorphism in SOD2 with diabetes mellitus and diabetic microvascular complications: a meta-analysis. Diabetologia 2011;54:803-11. [Crossref] [PubMed]
  70. Syreeni A, El-Osta A, Forsblom C, et al. Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes 2011;60:3073-80. [Crossref] [PubMed]
  71. Qiu M, Xiong W, Liao H, et al. VEGF? 634G> C polymorphism and diabetic retinopathy risk: a meta-analysis. Gene 2013;518:310-5. [Crossref] [PubMed]
  72. Zhao T, Zhao J. Association between the-634C/G polymorphisms of the vascular endothelial growth factor and retinopathy in type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract 2010;90:45-53. [Crossref] [PubMed]
  73. Gong JY, Sun YH. Association of VEGF gene polymorphisms with diabetic retinopathy: a meta-analysis. PLoS One 2013;8:e84069 [Crossref] [PubMed]
  74. Lu Y, Ge Y, Shi Y, et al. Two polymorphisms (rs699947, rs2010963) in the VEGFA gene and diabetic retinopathy: an updated meta-analysis. BMC Ophthalmol 2013;13:56. [Crossref] [PubMed]
  75. Loos RJ. Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 2012;26:211-26. [Crossref] [PubMed]
  76. Estopinal CB, Chocron IM, Parks MB, et al. Mitochondrial Haplogroups Are Associated With Severity of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2014;55:5589-95. [Crossref] [PubMed]
  77. Zeng J, Chen B. Epigenetic Mechanisms in the Pathogenesis of Diabetic Retinopathy. Ophthalmologica 2014;232:1-9. [Crossref] [PubMed]
  78. Agardh E, Lundstig A, Perfilyev A, et al. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med 2015;13:182. [Crossref] [PubMed]
  79. Gao X, Gauderman WJ, Marjoram P, et al. Genetic variants associated with proliferative diabetic retinopathy in Latinos. Invest Ophthalmol Vis Sci 2014;55:2238.

译者介绍

卢晓婷
深圳市龙岗区第二职业技术学校。天津医科大学眼视光学专业;天津外国语大学英语专业;深圳职校视光专业教师;视光相关企业技术顾问;眼镜验光员考评员;眼科视光门诊工作经验和视光培训经验;擅长近视防控领域和个性化配镜。(更新时间:2021/8/15)

审校介绍

李淑婷
常州市第一人民医院。毕业上海交通大学,眼科学医学博士,主治医师,江苏省“双创博士”人才培养对象,常州市的高层次人才引进对象。常州市医学会内分泌分会糖尿病眼病学组委员,主持江苏省自然基金青年项目和常州市应用基础研究计划项目各一项,参与国家自然基金面上项目一项,共发表论文共20余篇,以第一作者/通讯作者发表论文11篇。(更新时间:2021/7/28)

(本译文仅供学术交流,实际内容请以英文原文为准。)

doi: 10.21037/aes.2017.07.04
Cite this article as: Tom L, Davoudi S, Sobrin L. Genetic epidemiology of diabetic retinopathy. AME Med J 2017;2:56.

返回列表
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180